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Abstract

The ability to compositionally map language to referents, relations, and actions1

is an essential component of language understanding. The recent gSCAN dataset2

(Ruis et al. 2020, NeurIPS) is an inspiring attempt to assess the capacity of models3

to learn this kind of grounding in scenarios involving navigational instructions.4

However, we show that gSCAN’s highly constrained design means that it does5

not require compositional interpretation and that many details of its instructions6

and scenarios are not required for task success. To address these limitations,7

we propose ReaSCAN, a benchmark dataset that builds off gSCAN but requires8

compositional language interpretation and reasoning about entities and relations.9

We assess two models on ReaSCAN: a multi-modal baseline and a state-of-the-art10

graph convolutional neural model. These experiments show that ReaSCAN is11

substantially harder than gSCAN for both neural architectures. This suggests that12

ReaSCAN can serve as a valuable benchmark for advancing our understanding of13

models’ compositional generalization and reasoning capabilities.14

1 Introduction15

Natural languages are compositional [1, 2, 3] and grounded [4, 5, 6]; the meanings of complex16

phrases are derived from their parts, and meaning itself is defined by a mapping from language to17

referents, relations, and actions. It is therefore vital that we push NLP systems to be grounded and18

compositional as well. However, the major benchmarks in the field right now mostly do not support19

rich grounding, and it is often unclear whether they support learning compositional structures, as20

evidenced by their common failures at simple adversarial tests involving compositionality [7, 8, 9].21

There are several benchmarks for testing compositional generalization [10, 11, 12, 13, 14]. SCAN [12]22

focuses on compositionality in the area of interpreting navigational instructions. Building off SCAN,23

Ruis et al. [14] propose a grounded version of SCAN called gSCAN, in which agents have to24

ground navigation commands in a grid world in order to identify the correct referent. gSCAN25

supports learning in idealized scenarios involving navigational instructions, and it seeks to probe for26

compositionality. The design is simple and flexible, making it a potentially valuable benchmark and a27

source for insights into how to design robust tests of language understanding.28

However, we find that gSCAN has three major limitations: (1) its set of instructions is so constrained29

that preserving the linguistic structure of the command is not required; (2) the distractor objects in its30

∗Equal contribution.
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“push the small red circle 
hesitantly”

“walk to the small square 
that is inside of a yellow 

box cautiously”

Simple (gSCAN) 1-relative-clause

Referent Target

Command

2-relative-clauses 2-relative-clauses (RD)

Target

“pull the square that is in 
the same column as a blue 

cylinder and in the same row 
as a small red circle

 while spinning”

Target
Target

D1

D2-1

D2-2
D3

“pull the square that is in 
the same column as a blue 

cylinder and in the same row 
as a small red circle

 while spinning”

Target

Figure 1: Four command-world pairs for different command patterns. Our simple command is equivalent to
gSCAN [14]. RD means distractors are randomly sampled. Referent targets shaded in red with distractors are
shaded in blue, and are highlighted by green dash lines.

grounded scenarios are mostly not relevant for accurate understanding; and (3) in many examples,31

not all modifiers in the command are required for successful navigation, which further erodes the32

need for compositional interpretation and inflates model performance scores.33

To address these limitations, we propose ReaSCAN, a benchmark dataset that builds off gSCAN and34

addresses its limitations. Figure 1 provides examples and a comparison with gSCAN. We establish35

that ReaSCAN requires both compositional language interpretation and complex reasoning about36

entities and relations. Like gSCAN, ReaSCAN is algorithmically generated, which allows us to vary37

the difficulty of the learning problems we pose and thus diagnose model limitations with precision. In38

addition, we introduce a range of complex distractor sampling strategies which, in case of incorrect39

target identification, can help pinpoint which failure in command understanding led to the error. This40

allows us to show that challenging distractors can severely impact performance in this task.41

We assess two models on ReaSCAN: a multi-modal baseline and a state-of-the-art graph convolutional42

neural model. These experiments show that ReaSCAN is substantially harder than gSCAN for both43

neural architectures, and they verify that we can modify the difficulty of learning tasks in the desired44

ways to achieve fine-grained insights into model performance and model limitations. This suggests45

that ReaSCAN can serve as a valuable benchmark for advancing our understanding of models’46

compositional generalization and reasoning capabilities in linguistic tasks. We hope also that the47

general techniques used to move from gSCAN to ReaSCAN can be applied more generally in the48

design of future benchmarks for assessing grounded, compositional language use.49

2 Related Work50

There are a variety of efforts underway to more deeply understand how neural models ground51

linguistic cues with visual inputs, including visual question answering [10, 15, 16, 17, 18], image52

captioning [19, 20, 21], referring expression resolution [12, 14], navigation [22, 23, 24] and program53

induction and synthesis [25, 26, 27]. Similar to previous synthetic benchmarks, our work aims54

to provide a controlled environment that can be used to evaluate a neural model’s generalization55

capabilities according to a variety of specific generalization tasks. Specifically, we focus on evaluating56

compositional generalization with referring expression resolution.57

A number of recent approaches involve generating synthetic datasets to evaluate compositional gener-58

alization of neural models [10, 11, 13, 28, 29, 30, 31, 32]. For instance, [31] proposed CLOSURE,59

a set of unseen testing splits for the CLEVR dataset [10] which contains synthetically generated60

natural-looking questions about 3D geometric objects. Our work investigates a similar generalization61

over grounded linguistic inputs in a visual scene but focuses specifically on a model’s capability to62

resolve linguistic compositionality. We evaluate the generalization capabilities of neural models by63

testing them against unseen compositions of the language input which require grounding in simulated64

shape worlds.65
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Models performing well on gSCAN are a promising first test case for ReaSCAN. Numerous ap-66

proaches have been proposed to handle at least some of the challenges posed by SCAN and gSCAN67

datasets including novel data augmentation methods and neural architectures [33, 34, 35, 36, 37, 38].68

Successful neural models on gSCAN involve compositional neural networks which increase gener-69

alizability [37] and language conditioned graph neural networks for encoding objects [38]. While70

these techniques solve some of the simpler splits in gSCAN involving generalization of novel object71

attributes [38], we show that they are still ineffective for similar splits of ReaSCAN in Section 6.2.72

ReaSCAN, therefore, provides a more challenging benchmark, revealing clear shortcomings of73

current models’ generalization capabilities.74

3 Background: The Grounded SCAN Benchmark (gSCAN)75

The gSCAN benchmark is an extension of the SCAN dataset [12] with a focus on grounding actions76

in a changeable environment. In gSCAN, a grid world containing an agent and several shapes is77

paired with a command, such as “walk to the red square cautiously”. The goal is to generate an action78

sequence like 〈left,right,right,left〉 that lets the agent execute the command in that particular79

world to reach the referent target. Adverbs like “cautiously” assign specific modes of movement80

to the overall sequence. gSCAN enables tests for compositional generalization by presenting the81

model with unseen verb–adverb combinations (“walk cautiously” vs. “push cautiously”), unseen82

adjective–noun compositions, unseen color–shape feature co-occurrences on objects, and unseen83

locations for the target referent.84

The guiding ideas behind gSCAN seem powerful and relevant, but we identify four ways in which85

specific design choices reduce the potential of the dataset to achieve its central goals:86

1. Irrelevance of Word Order Since gSCAN is meant to be a simple synthetic dataset, all com-87

mands consist of a verb, a noun phrase consisting of a noun with a potential color and/or size modifier,88

and an optional adverb. Given this template, the word order of the input command is irrelevant for89

determining the correct action sequence. The words “walk to the red square cautiously” can be90

scrambled and still yield a unique correct order with only a single potential referent. Consequently,91

Bag-of-Words accounts are in principle sufficient for encoding the gSCAN commands. As a point of92

contrast, the commands in the earlier SCAN dataset, such as “walk twice and jump thrice”, cannot93

be scrambled in this way without a task-relevant loss of information, and are therefore much more94

challenging to solve on the command level.95

2. A Limited Test for Linguistic Compositionality gSCAN includes a test set in which all com-96

mands involve a previously unseen referring expression combination (the novel NP “yellow square”),97

with the goal of seeing whether models can predict the meaning of the whole from its parts “yel-98

low” and “square”, which are seen in training. This is a clear test for compositionality. However,99

unfortunately, the split creation process didn’t inherently require an understanding of “yellow” and100

“square” to be necessary for a unique identification in a specific world. In the split provided by the101

authors,1 both the color and shape feature are only required in 62.7% of all test examples. (Color is102

sufficient in 25.2% of all test examples, shape in 10.6%, and either of the two in 1.4% of all cases.)103

gSCAN also includes a test split designed to require feature attribute composition: in training, the104

referent target is never an object with the color feature red and shape feature square. At test time,105

only red squares are targets and are referred to with all valid referring expressions (i.e., “(small|big)?106

red? square”). As in the previous split, color and shape feature in the command are necessary in just107

62.5% of all test examples, making it equally unsuitable for investigating linguistic compositionality.108

3. Biased Distractor Sampling Distractor sampling in gSCAN relies on random selection of all109

objects that are not mentioned in the command. In general, if the utterance mentions a blue circle,110

the algorithm creates all possible objects that aren’t blue circles. Then, it selects half of them as111

distractors. There is one exception: if the utterance contains a size modifier (as in “small blue circle”),112

there will be a big blue circle as a distractor. Due to the distractor sampling design, simple utterances113

such as “the circle” will only have one distractor, while more complex utterances will have many114

more. This makes by-chance accuracy dependent on the informativity/complexity of the linguistic115

expression.116

1https://github.com/LauraRuis/groundedSCAN
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4. Too Few Effective Distractors As shown in the first example for gSCAN of Figure 1, the output117

action sequence stays the same even if we randomly reorder all objects except the referent target.118

In fact, the size, color, and shape of other objects can be modified without any effect on the output119

action sequence. As a result, grounding is based on essentially two objects, the two red circles. (See120

Section 4.2 for details about how distractors affect performance.)121

In sum, gSCAN provides novel systematic ways of investigating grounded language understanding122

but it lacks a way to keep investigating the syntactic compositional questions in the command which123

motivated SCAN. ReaSCAN introduces more complex command structure that enforces models to124

retain some linguistic structure to solve it, and contains compositional splits that ensure the necessity125

of compositional generalization capabilities for the input command. Due to the more complex126

command structure, this requires elaborate distractor sampling strategies with the goal to make127

distractors maximally competitive to promote grounding to multiple objects in the world.128

4 The Reasoning-based SCAN Benchmark (ReaSCAN)129

We now introduce ReaSCAN, which seeks to address the above limitations of gSCAN. Like gSCAN,130

ReaSCAN is a command-based navigation task that is grounded in a grid world containing the agent,131

a referent target, and a set of distractors, as shown in Figure 1.132

Given a command Ci paired with a corresponding grid worldWi,j , the goal is to generate an action133

sequence ai,j which contains the actions that the agent needs to take in order to reach the target134

referent and operate on it. An oracle model learns a mapping G that formulates ai,j = G(Wi,j ,Ci)135

for i ∈ [1, N ] where N is the number of commands and j ∈ [1,M ] where M is the number of worlds136

generated for each command.137

Crucially, ReaSCAN extends gSCAN while ensuring two main desiderata: (1) word-order permu-138

tations in the command will lead to ambiguities about the intended referent, requiring a model to139

resolve linguistic structure, and (2) the identity of the referent depends on reasoning about multiple140

distractor objects in the world. Consider the 2-relative-clauses example (third from left) in141

Figure 1. If we scramble the word order of the command by swapping attributes between the second142

and the third objects, and change them to “small blue circle” and “red cylinder”, the referent target143

changes (e.g., object D1 in the world); additionally, if the model only understands the first relational144

clause “the same column as a blue cylinder”, it may discover multiple referent targets (e.g., object145

D2-1 in the world). These modifications ensure that understanding ReaSCAN commands requires146

resolving the syntactic structure of the command, while largely maintaining the simplicity of SCAN147

and gSCAN.148

In the following sections, we discuss the key components of ReaSCAN. We first introduce the149

process of generating ReaSCAN commands. Next, we describe how commands are grounded with150

shape worlds, and specifically the distractor sampling strategies. Finally, we propose test splits151

which provide systematic tests of a model’s generalization abilities2. Note that we discuss potential152

ReaSCAN artifacts in Appendix B.153

4.1 ReaSCAN Command Generation154

ReaSCAN commands are constructed with the following regular expression pattern:155

Pattern := $VV $OBJ (that is $REL_CLAUSE (and $REL_CLAUSE)*)* $ADV?

where the recursive structure allows commands to contain multiple relative clauses and conjunctive156

clauses. If there is no relative clause, the resulting commands are comparable to gSCAN commands157

(e.g., “walk to the red square cautiously”). From the regular expression, commands are created by158

sampling from the semantics of each primitive, which are terms starting with “$” (Table 1). For159

example, we substitute $REL $OBJ for $REL_CLAUSE, and we can further recursively sample each160

term from their assigned semantics.161

During this process, we also introduce restrictions to avoid ungrammatical and unnatural commands,162

enforced by rule-based conditional sampling. This way, commands such as “walk to the square that163

2We release the version of ReaSCAN used in this paper, and our code to generate ReaSCAN at https:
//github.com/frankaging/Reason-SCAN.
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Syntax Descriptions Potential Meaning
$VV verb {walk to, push, pull}

$ADV adverb {while zigzagging, while spinning,
cautiously, hesitantly}

$SIZE attribute {small, big}∗
$COLOR attribute {red, green, blue, yellow}
$SHAPE attribute {circle, square, cylinder, box, object}

$OBJ objects (a | the) $SIZE? $COLOR? $SHAPE
$REL relations {$SameRow, $SameCol, $SameColor,

$SameShape, $SameSize, $IsInside}
$REL_CLAUSE clause $REL $OBJ

Table 1: Definitions of syntax used in ReaSCAN command generation.∗the
actual size of any shape is chosen from {1,2,3,4} as in gSCAN [14].

$SameRow $SameCol

$SameColor $SameShape

$SameSize $IsInside

Figure 2: Relations.

is in the same color as the red circle” would be excluded, as “walk to the red square” is a shorter and164

more direct formulation with the same meaning. See Appendix C for details about our rule-based165

conditional sampling over commands.166

In this data creation procedure, both the relative clauses and conjunctive clauses have the flexibility167

to expand in depth and in width. In this paper, we focus on commands with a maximum of a single168

conjunction of two relative clauses. In total, we generate the following commands:169

• Simple:= $VV $ADV? (equivalent to gSCAN commands)170

• 1-relative-clause:= $VV $OBJ that is $REL_CLAUSE $ADV?171

• 2-relative-clauses:= $VV $OBJ that is $REL_CLAUSE and $REL_CLAUSE $ADV?172

We use our framework to generate three separate subsets for each command pattern. We then define173

random train/dev/test splits for each of the subsets to benchmark difficulty (see Section 6.1 for details),174

where Simple commands are equivalent to gSCAN commands. As shown in Figure 4, the action175

sequence length has the same distribution as gSCAN and across all patterns. As a result, ReaSCAN176

does not require models to predict longer sequences, which would raise separate issues concerning177

generalization [39].178

4.2 ReaSCAN World Generation with Active Distractor Sampling179

Similar to gSCAN, we use the open-sourced MiniGym from Open-AI3 to generate multiple shape180

worlds for each command. Objects are freely placed in an n × n grid-world, where we fix n = 6.181

Given a command Ci, objects and their locations are determined as follows: (1) We select objects182

mentioned in Ci, initialize them with their specified features, and randomly fill underspecified features.183

For instance, in Figure 3, the command requires the second object to be green and a circle, but its184

size is not specified and so is randomly assigned (e.g., here as big). (2) The objects are randomly185

placed on the grid while ensuring the relations expressed in Ci are true. (3) We sample distractors in186

a way that ensures that failure to fully understand Ci has a high likelihood of leading to an incorrect187

prediction about the target.188

As discussed in Section 3, careful distractor sampling is essential for ensuring that our dataset can be189

used to assess systems for compositionality. Distractors must reliably introduce uncertainty about the190

identity of the target.191

For example, if the target is a small red circle, a large red circle competes with the target in the size192

dimension, and confusing the distractor with the target would indicate a lack of understanding of the193

size domain or its composition. Distractors that have little in common with the target are therefore194

weak distractors. We employ four distractor-sampling methods that ensure a challenging task that can195

3https://github.com/maximecb/gym-minigrid
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Figure 3: Illustration of the conversions between the
multi-edge graph and the shape world or the com-
mand.

Figure 4: Length distributions of action sequences
for different datasets.

be used to reliably diagnose specific model shortcomings. We exemplify their purpose by referring196

back to the 2-relative-clauses example (i.e., the third example) in Figure 1.197

Attribute-based distractors compete with the target if a model struggles with size, color, and shape198

features. They are created by simulating a change of one of these features in the command and adding199

objects to the world which make a distractor the plausible target. For instance, if we substitute the200

shape attribute of the “blue cylinder” to “circle” in the command, the referent target changes (e.g.,201

object D3 in the world). Correctly interpreting the shape attribute becomes crucial for correct target202

identification.203

Isomorphism-based distractors become potential targets after word-order permutations of the204

command. For instance, if we scramble the word order of the command by swapping attributes205

between the second and the third objects, and change them to “small blue circle” and “red cylinder”,206

the referent target changes (e.g., object D1 in the world). These distractors are crucial to ensure the207

necessity of linguistic compositionality to solve the task while Bag-of-Words models can maximally208

achieve chance accuracy.209

Relation-based distractors ensure that the relative clauses in the command are required to identify210

the intended target referent. For instance, if the model only understands the first relational clause “the211

same column as a blue cylinder”, other distractors may become the referent target (e.g., object D2-1212

in the world); similarly, if the model only understands the second relational clause “the same row as a213

small red circle”, object D2-2 in the world may become the referent target.214

For each world, we sample relation-based distractors exhaustively, and we sample at least one attribute-215

based distractor by randomly selecting one object and perturbing its attribute. For isomorphism-216

based distractors, we randomly select any pair of objects and swap attributes if applicable. If a217

distractor-sampling method cannot work for a specific command-world pair, we incorporate random218

distractors by randomly sampling a size, color and shape for each random distractor. This results in219

a maximum of 16 objects in each generated world. (For gSCAN, the maximum is 12.)220

For size, a relative scalar adjective, we added an additional constraint. If the command contains a221

size modifier, a world always contains a distractor of a different size (similarly to gSCAN). To avoid222

vagueness about the intended referents, we ensure that there are only two sizes in that particular223

world. As the complexity of distractors increases, there is an increased probability that there could be224

more than one object in the world that could be the target referent. To ensure a unique solution for all225

examples, we develop graph-based representations (see Figure 3 for an example) of our shape worlds226

and use sub-graph matching algorithms to validate examples (see Appendix D for details).227

4.3 Compositional Splits228

ReaSCAN allows us to define a variety of different train/dev/test splits that vary in complexity.229

Table 3 provides an overview of the splits that we have explored to date. Test splits from category A230

investigate novel attribute compositions at the command and object level (see Section 6.2), which are231

adapted from gSCAN. Test splits in category B investigate how a model generalizes to previously232
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Command-World Pairs Exact Match% (Std.)
Random M-LSTM GCN-LSTM

Train Dev Test Dev Test Dev Test Dev Test

gSCAN 367,933 19,282 3,716 - - - 97.69 (0.22) - 98.60 (0.95)

Simple 113,967 6,318 1,215 0.17 (0.06) 0.11 (0.13) 93.39 (1.97) 93.64 (2.52) 98.06 (0.98) 97.86 (1.27)
1-relative-clause 340,985 18,903 3,635 0.14 (0.04) 0.12 (0.02) 60.68 (3.04) 61.28 (1.81) 97.25 (0.68) 97.19 (0.79)
2-relative-clauses 549,634 30,470 5,859 0.12 (0.01) 0.13 (0.03) 53.08 (13.9) 52.77 (14.6) 96.80 (0.82) 96.85 (0.75)
2-relative-clauses (RD) 569,835 31,590 6, 075 0.16 (0.02) 0.12 (0.05) 89.56 (0.66) 89.81 (0.60) 98.14 (0.45) 97.97 (0.48)
All 539,722 29,920 5,753 0.13 (0.02) 0.14 (0.03) 78.48 (1.38) 79.04 (1.24) 98.78 (0.55) 98.96 (0.59)

Table 2: ReaSCAN statistics with random splits and performance results of baseline models trained separately
for each command pattern. All excludes compositional splits. Results are aggregated from 3 independent
runs with different random seeds. Performance with gSCAN is from original papers for M-LSTM [14] and
GCN-LSTM [38].

unseen co-occurrences of concepts including both objects and relations (see Section 6.3), unique to233

ReaSCAN. Finally, category C investigates if a model can extrapolate from simple to more complex234

embedded phrase structures (see Section 6.4).4235

5 Models236

We report ReaSCAN experiments with three models. We give high-level descriptions here, and237

Appendix E provides additional details.238

Random Baseline A sequence-generation model that randomly samples actions from our vocabu-239

lary and generates action sequences with the same lengths as the actual action sequences. This serves240

as the lower bound of model performance.241

M-LSTM A multimodal LSTM model, which we adapted from a model proposed for gSCAN [14].242

This is a sequence-to-sequence (seq2seq) model [40] that takes an encoding of the visual input as a243

separate modality. The encoder consists of two parts: a bidirectional LSTM (BiLSTM; [41, 42]) as244

the language encoder for the commands, and a convolutional network (CNN) [43] as the shape-world245

encoder. Given a world-command pair (Wi,j ,Ci) as the input, the goal is to generate an action246

sequence ai,j . The output sequence is generated by an attention-based bidirectional LSTM.247

GCN-LSTM A graph convolutional neural (GCN) network with a multimodal LSTM which is,248

to the best of our knowledge, the best-performing model on gSCAN [38]. The model encodes249

commands using a BiLSTM with multi-step textual attention [44]. The shape world is encoded using250

a GCN layer. The command embedding is fed into the GCN which makes it language-conditioned.251

Each node in GCN is initialized as object representation provided in the dataset. Then, it performs252

multi-rounds message passing to contextualize object embeddings based on relations. Then, the object253

embeddings are fed through another CNN layer before feeding into an attention-based BiLSTM254

togther with the command embedding to generate the output sequence, as in Ruis et al. [14].255

6 Experiments256

6.1 Random Split257

We generate large random splits for all patterns to validate that models can learn to follow ReaSCAN258

commands when there are no systematic differences between training and test. We do this while259

systematically varying the complexity of the inputs, from Simple (no relative clauses, as in gSCAN)260

to 2-relative-clauses, and we evaluate when merging all three together (All). Appendix A261

provides additional details concerning how these splits are created.262

The results in Table 2 show that the GCN-LSTM is uniformly superior to the M-LSTM. In addition, for263

both models, performance drops as the number of relative clauses grows. The M-LSTM performs far264

4We deliberately skip adapting some splits from gSCAN, such as novel relative agent positions, novel action
length, and novel adverbs, since SCAN and gSCAN are sufficient for their evaluation. However, ReaSCAN is
easily adaptable to these cases, as well.
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Compositional Splits Command-World Pairs Exact Match% (Std.)
Random M-LSTM GCN-LSTM

Simple (Test) 921 0.07 (0.06) 96.27 (0.54) 99.71 (0.22)
1-relative-clause (Test) 2,120 0.08 (0.07) 79.09 (2.63) 99.14 (0.23)
2-relative-clauses (Test) 2,712 0.10 (0.02) 73.16 (1.85) 98.58 (0.54)
All (Test) 5,753 0.14 (0.03) 79.04 (1.24) 98.96 (0.59)

A1:novel color modifier 22,057 0.12 (0.05) 50.36 (4.03) 92.25 (0.77)
A2:novel color attribute 81,349 0.14 (0.01) 14.65 (0.55) 42.05 (4.55)
A3:novel size modifier 35,675 0.14 (0.03) 50.98 (3.69) 87.46 (2.22)
B1:novel co-occurrence of objects 10,002 0.12 (0.03) 52.17 (1.63) 69.74 (0.30)
B2:novel co-occurrence of relations 6,660 0.16 (0.05) 39.41 (1.53) 52.80 (2.75)
C1:novel conjunctive clause length 8,375 0.10 (0.01) 49.68 (2.73) 57.01 (7.99)
C2:novel relative clauses 8,003 0.09 (0.02) 25.74 (1.36) 22.07 (2.66)

Table 3: ReaSCAN statistics with compositional splits and performance results of baseline models trained with
all command patterns. Results are aggregated from 3 independent runs with different random seeds.

worse with longer clauses (43.65% drop from Simple to 2-relative-clauses). The GCN-LSTM265

experiences smaller drops (1.03% from Simple to 2-relative-clauses). These results suggest266

that graph-based neural networks may be better at capturing relations between objects and reasoning267

over relations than the plain CNNs used by the M-LSTM. Additionally, the GCN-LSTM shows smaller268

standard deviations from random initializations, suggesting it is more robust on the ReaSCAN task as269

well.270

When we resample shape worlds with only random distractors, performance from both models271

increases. In fact, with random distractors, test performance of 2-relative-clauses drops less272

than 4% compared to the Simple conditions, for both models. This finding reinforces the importance273

of sampling challenging distractors.274

6.2 A: Novel Object Attributes275

Evaluating neural models on unseen combinations of object attributes remains an ongoing chal-276

lenge [10, 11, 45]. Here, we extend gSCAN’s efforts in this area by testing models on unseen277

composites of size, color, and shape.278

A1: Novel Color Modifier In this split, we hold out all examples where the commands contain279

“yellow square” for any size (e.g., “small yellow square” or “big yellow square”), meaning that280

models cannot ground any targets to the expression containing “yellow square”. However, the train281

set includes examples with phrases such as “yellow cylinder” (52,820 unique examples) and “blue282

square” (90,693 unique examples). At test time, models need to zero-shot generalize in order to283

interpret “yellow square” correctly. Our distractor sampling strategy ensures that the scenario contains284

relevant non-yellow squares and non-square yellow things, so that both shape and color information285

needs to be integrated for correct target identification. Table 3 shows that both models perform worse286

on these splits than with random splits, with the M-LSTM showing the largest drop in performance.287

While the GCN-LSTM is clearly getting traction on this task, the results show that compositional288

generalization remains a serious challenge.289

A2: Novel Color Attribute In this split, we test model performance on a novel combination of290

the target referent’s visual features. To test that, we ensure that red squares are never targets during291

training. Commands also never contain “red square” even in the position of the relations (i.e., inside292

the relative clauses). However, differently sized red squares are seen during training since they often293

appear as non-target background objects (266,164 unique examples). We make sure the color attribute294

is necessary for identifying the target referent, and restrictions apply to objects at all positions in the295

command. Our results in Table 3 show that this split is slightly harder for both models (with a 81.47%296

drops for M-LSTM and a 57.51% for GCN-LSTM) than A1 as models need to learn visual composites297

of “red square” from potential reasoning over background objects. Once again, our results suggest298

that GCN-LSTM is better at generalizing to unseen compositions.299
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A3: Novel Size Modifier Size is a relative concept in our commands; the same object could be a300

small square in one context and not in another, depending on the sizes of the other squares present.301

Similar to A1, we evaluate whether models can zero-shot generalize to new size/shape combinations.302

Specifically, we hold out all commands containing “small cylinder”, meaning that models have not303

seen expressions such as “small cylinder” or “small yellow cylinder” during training. At test time,304

models need to generalize when a small cylinder in any color is referred to with expressions such as305

“small cylinder”. During training, the models still learn the relative meaning of “small” by seeing306

examples containing expressions such as “small square” (22,866 unique examples) or “small red307

circle” (23,838 unique examples). In addition to generalizing over new composites, models also308

cannot simply memorize “small” as a specific size (e.g., object of size 2), since the meaning is309

contextually determined. Similar to A1, we ensure that the size attribute is necessary for identifying310

the referent target, and restrictions apply to objects at all positions.311

Table 3 shows that both models achieve comparable performance to A1 which suggests that the312

generalization capabilities across unseen color and size composites for both models are similar.313

GCN-LSTM continues to perform better than M-LSTM suggesting that GCN is more successful in314

generalizing to relative concept as well.315

6.3 B: Novel Co-occurrence of Concepts316

In this experimental condition, we assess the ability of models to generalize to novel combinations of317

concepts including objects and relations at the clause level.318

B1: Novel Co-occurrence of Objects To construct this split, we first collect all objects (e.g.,319

“small red circle” and “big blue square”) mentioned in the training set. Then, we construct commands320

with seen objects that never co-occur during training. Additionally, we control commands to only321

contain co-occurrences of relations that are seen during training. In this condition, the GCN-LSTM322

continues to outperform the M-LSTM in generalizing to unseen co-occurrences of relations. Compared323

to novel attribute modifiers (i.e., A1 and A3), GCN-LSTM performance decreases.324

B2: Novel Co-occurrence of Relations In this split, we hold out examples containing commands325

mentioning both “same size as” and “inside of” relations, meaning the models never see examples326

such as “walk to the object that is the same shape as the red object and that is inside of the red box”.327

However, in training, models see cases where the relation “inside of” co-occurs with other relations,328

such as “same row as” (58,863 unique examples). Table 3 shows that both models perform worse329

compared to B1. This suggests that generalizing over co-occurrence of relations is harder for both330

model architectures which requires novel reasoning over objects.331

6.4 C: Novel Phrase Structures332

As shown in Section 4.1, the number of phrase structures in ReaSCAN can be manipulated. In333

the following experiments, we test whether a model trained with at most two relative clauses (see334

Section 4.1 for all patterns) can generalize well to commands with novel phrase structures.335

C1: Novel Conjunctive Clause Length In the first experiment, we generate examples with336

commands that have one additional conjunction clause (i.e., “and $REL_CLAUSE” is added to the337

2-relative-clauses commands). Our results in Table 3 suggest that both models fail to generalize338

over longer relative clauses (with a 37.15% drop for M-LSTM and a 42.39% drop for GCN-LSTM).339

Since both models are LSTM-based, it may suggest that LSTM-based models don’t generalize well340

to longer sequences at test time, which has been found in more recent studies [12], though some of341

this may trace to how stop tokens are used [39].342

C2: Novel Relative Clauses In this experiment, we generate examples with commands that have343

two recursive relative clauses (i.e., “and” is swapped with “that is” in the 2-relative-clauses344

commands)5. For this condition, both models result in catastrophic failures (with a 67.43% drop for345

M-LSTM and a 77.70% drop for GCN-LSTM). Our results suggest that GCN is incapable of generalizing346

over novel recursive relations. The performance degradation of GCN-LSTM may suggest that the fault347

5We only allow relations to be “same row as” and “same column as” to avoid invalid commands.
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lies with the way the GCN component embeds relational information in its object representations.348

This is a strength for known combinations but a potential hindrance for novel ones.349

7 Conclusion350

We introduced the ReaSCAN benchmark, which seeks to build on the insights behind the gSCAN351

dataset of Ruis et al. [14] while addressing its shortcomings. ReaSCAN is designed to support352

controlled assessments of whether models have truly learned grounded, compositional semantics. We353

find that a state-of-the-art GCN-LSTM model achieves strong results for most of the compositional354

splits from gSCAN. Results on ReaSCAN, however, suggest that those capabilities are overestimates.355

Furthermore, ReaSCAN allows for more intricate investigations of the resolution of linguistic356

structure. The GCN-LSTM model is successful at tasks involving novel linguistic modifiers and357

novel entity attribute combinations, but it fails to generalize in settings involving novel relation358

combinations and longer commands. These results indicate that, while we are making progress in359

achieving grounded, compositional models, many substantial challenges remain. While ReaSCAN360

introduces complexity to the problem due to sophisticated distractor sampling strategies and more361

elaborate input commands, the synthetic nature of the dataset remains far from complex naturalistic362

data. We hope to see ReaSCAN starting to bridge this gap, e.g., by extending it with human363

annotations.364

Broader Impact365

Enabling neural models to compositionally generalize learnt knowledge to unseen situations mimics366

how humans use and understand language. Advancing benchmarks to evaluate models with such367

abilities becomes increasingly important. Our ReaSCAN benchmark is designed to advance our un-368

derstandings of models’ compositional generalization and reasoning capabilities. We hope ReaSCAN369

could serve as a valuable benchmark dataset to propel new neural models that think, reason and act370

like humans. We do not foresee any negative impact on society or our research community.371
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Appendix for ‘ReaSCAN: Compositional Reasoning in538

Language Grounding’539

A Dataset Generation540

A.1 Action Sequence541

Following gSCAN [14], ReaSCAN agents produce strings composed of action symbols {walk, push, pull,542

stay, L_turn, R_turn}. The actions push and pull correspond to the “push” and “pull” verbs in the command.543

For the verb “push”, the agent must push the referent object where pushing requires moving something as far as544

possible before hitting a wall or another object. For the verb “pull”, the agent must pull the referent object, in545

which case it would pull the object back as far as possible before hitting a wall or another object. Additionally,546

any object of size 1 or 2 is labeled as light, and any object of size 3 or 4 is labeled as heavy. If the referent target547

is a heavy object, the agent needs to push twice or pull twice to move to the next cell (e.g., 〈push,push〉 or548

〈pull,pull〉 ). The optional adverbs at the end of the command may alter action sequences by inserting actions549

following the adverb. For example, a list of actions 〈L_turn,L_turn,L_turn,L_turn〉 is inserted into the550

action sequence to fulfill the adverbial “while spinning”. Since composition generalization on adverbs is not the551

focus of this paper, we randomly sample adverbs for each command. See the original gSCAN paper for details552

on adverbs creation [14].553

A.2 Grounded Determiners554

ReaSCAN further extends the naturalness of the linguistic input by grounding its determiners. If an NP in the555

command (e.g., “red circle”) is preceded by the definite determiner “the”, there is only one red circle in the556

world. Otherwise, the object is preceded by the indefinite determiner “a”.557

A.3 Dataset Statistics558

Given the rich structure of our commands (see Section 4.1), the number of possible commands grows substantially559

with longer patterns. To ensure we can still generate enough shape worlds per command, we have to down-560

sample our commands significantly for longer commands. For the Simple command, we exhaustively collect561

all commands, totalling 675 commands. For commands for one or more relative clauses, we then sample 2,025562

commands for 1-relative-clause, and 3,375 for 2-relative-clauses. For each command, we sample563

180 shape worlds, which is similar to the gSCAN setup. Our framework is also able to generate the full version564

of ReaSCAN (i.e., considering all combinations of commands), which, though, uses about 250G of disk space.565

A.4 Infrastructure Setups566

To generate commands for all three patterns, it takes approximately 16 hours using a single process on a standard567

CPU cluster. With 50 processes, it takes less than 20 minutes for the largest subset in this paper.568

B Dataset Artifacts569

In contrast to realistic datasets, synthetic datasets provide controllable environments for testing a specific aspect570

of neural models. However, synthetic datasets may produce artifacts induced from the programs generating them.571

Here, we disclose, as comprehensively as we can, potential artifacts resulting from our data generation process.572

B.1 Non-comprehensive Linguistic Structures573

As discussed in Section 4.1, commands from ReaSCAN follow a specific linguistic template and are non-574

comprehensive in covering all linguistic structures. For examples, there is no confusion about where relative575

clauses attach. Additionally, the location of occurrence of verbs and adverbs is fixed in our commands. In parallel,576

we also down-sample our commands for the 1-relative-clause and 2-relative-clauses conditions, to577

make ReaSCAN models trainable with reasonable computing resources.578

B.2 Non-comprehensive Distractors579

To generate a complete list of distractors for commands like “walk to the red circle that is in the same row as580

the blue square”, we need to change each attribute (e.g., “red”, “circle”, “blue” and “square”) while holding581

others constant. Consequently, our 2-relative-clauses commands could potentially require more than 600582

distractors to fulfill a complete sampling of distractors. However, this leads to a dataset that is incomparable583
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to gSCAN, which samples at most 12 distractors. Thus, we randomly select a set of phrases and make them584

necessary for each command (see Section 4.2 for details about distractor sampling strategies).585

We quantify the percentages of different types of distractors appearing in ReaSCAN (see definitions in Sec-586

tion 4.2 and Figure 5). Those quantifications are based on the distractors we explicitly generate to fulfill these587

purpose, therefore serving as a lower-bound estimation for all effective distractors within a world. By chance,588

some might in fact fulfill multiple purposes or a random distractor might by chance be highly competitive589

with the target, resulting in a higher number of effective distractors. As shown in Figure 5, relation-based dis-590

tractors are present in almost all examples with 1-relative-clause and 2-relative-clauses commands.591

For Simple and 1-relative-clause, we sample attribute-based distractors for almost all examples. For592

2-relative-clauses, we only sample attribute-based distractors when applicable. For example, we skip593

sampling attribute-based distractors when there are more than 2 boxes present in the shape world. As a result,594

attribute-based distractors are present in about 60% of the examples for 2-relative-clauses commands.595

Random distractors are present in close to 100% of worlds for simpler commands (e.g., Simple commands), and596

close to 0% of worlds for commands with more complex structures (e.g., 2-relative-clauses commands).597

Additionally, we only sample isomorphism-based distractors when applicable. For example, we only swap598

attributes between objects that are not the referent target.599

B.3 Shapes and Relations Biases600

As discussed in Section 4.1 and Appendix C, we sample commands following a set of rules, which may lead601

to imbalanced sampling for shapes and relations. For example, the shape “box” may only appear after the602

relational clause “is inside of”. As a result, the frequencies of the shape “box” and the relational clause “is inside603

of” are drastically different from the others. Additionally, we disallow unnatural commands such as “walk to604

the red circle that is in the same color as the square” or “walk to the circle that is in the same color as the red605

square”, where the relation is redundant or the unnatural command can be simplified. Following these rules, the606

frequencies of different relations and attributes could be further stratified.607

Figure 5 also includes frequency plots for different sizes, colors, shapes, and relations in ReaSCAN. We include608

frequency distributions for the commands and the shape worlds separately. For colors, frequencies are evenly609

distributed. For the sizes in commands (e.g., “big” or “small”), frequencies are evenly distributed. For the actual610

sizes in specific shape worlds, smaller sizes have lower frequencies. This is an artifact due to the shape “box”.611

Examples including larger boxes may tend to be valid examples compared to smaller ones, which impose spatial612

limitations. For shapes except the box, frequencies are evenly distributed. Box is less frequent, as it can only613

follow the specific relation “is inside of”. For selected relations, frequencies are extremely biased. As shown in614

Figure 5, relations such as “same shape as”, “same color as”, and “same size as” are much less frequent than the615

others. This is due to the fact that we exclude a significant number of unnatural commands that contain these616

relations (see Appendix C for details).617

B.4 Self-exclusiveness618

We assume every object mentioned maps to a unique object in the generated world. For example, if the command619

is “walk to the object that is in the same color as the square”, the target is not allowed to be the square itself.620

This is generally not true in the real world.621

B.5 Other Induced Artifacts622

Figure 5 includes the distributions for verbs and adverbs presented in our commands. As shown in the plot, both623

verbs and adverbs distribute uniformly. We also include distributions for agent-facing directions and agent–target624

relative directions at the start. As in gSCAN [14], our agent always start facing east. Additionally, the relative625

directions between the agent and the target at the start are distributed uniformly.626

C Rule-based Command Samplings627

As described in Section 4.1, our command generation process involves building relational clauses between628

objects. To prevent generated commands from being ungrammatical, we enforce some explicit rules when629

sampling commands:630

• Rule 1A: When a “same shape as” relational clause is present in the command (e.g., “OBJ1 that is631

in the same shape as OBJ2”), both objects for this clause cannot contain any shape descriptor. For632

example, we consider “a red object that is in the same shape as a red square” as unnatural since one633

could just say “a red square”. If OBJ1 contains a shape descriptor already, then the relational clause is634

unnecessary.635
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Figure 5: Statistics of ReaSCAN.

• Rule 1B: When the “same color as” relational clause is present in the command, both objects for this636

clause cannot contain any color descriptor.637

• Rule 1C: When the “same size as” relational clause is present in the command, both objects for this638

clause cannot contain any size descriptor. For size, we only allow two sizes for any objects when size639

descriptors are mentioned (e.g., a circle can only be in either of two random sizes if “small circle”640

appears in any command). This way there is never a small, big and medium-sized circle in a particular641

world where the size modifier could be confusing.642

• Rule 2: The following shape of the “is inside of” relational clause must be a box.643

• Rule 3: For any object term that has relational clauses following it, it cannot be over-specified with644

descriptors. For example, if we have “OBJ1 that is in the same shape as OBJ2”, we only allow relational645

conjunction clauses other than “same shape as”.646

• Rule 4: In contrast to gSCAN [14], we enforce an order of modifiers where size descriptors proceed647

color descriptors (e.g., we allow “small red circle” but not “red small circle”).648

These rules may over-sample or down-sample certain relations and shapes. We discuss these potential artifacts649

results in Section B.650

D Sub-graph Matching651

D.1 Multi-edge Graph Representation652

Our distractor sampling strategies incentivize models to learn compositional reasoning. At the same time, these653

strategies increase the chance that the referent target becomes unidentifiable. For example, even if we randomly654

place objects in a world, they may form relations consistent with the command by chance. We address this issue655

by solving constraints using a graph representation.656

We represent each world as a graph where nodes represent objects and edges represent relations between objects657

(see Figure 3 for an example). Each node has attribute-based relations with other nodes. For example, a “red658

circle” node will have a SAME_COLOR edge to a “red square” node. To make sure the referent target is unique for659

every command–world pair, we ensure only one referent target can be identified by querying the graph with our660

command. We simplify this problem as a problem of sub-graph matching. We represent each command as a661

sub-graph where nodes represent objects mentioned in the command and edges encode relations between nodes662

described in the command. Then, we use a sub-graph matching algorithm [46] to ensure that the sub-graph663

representing the command appears only once in the world graph. Sub-graph matching is a NP-hard problem, so664

we locally optimize our algorithm to have O(n2) time complexity.665
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D.2 Locally Optimized Sub-graph Matching Algorithm666

To ensure that there is only one referent target, we make sure that the sub-graph representing the command667

only appears once in the graph of the shape world, as illustrated in Figure 6. We include both the complete668

matching algorithm, which uses VF2 as the main algorithm (see Alg. 1), and our locally optimized algorithm (see669

Alg. 2) for the sub-graph matching problem. Note that this optimized algorithm only applies to three commands670

mentioned in Section 4.1, and may need minor modifications to adapt to other commands. We use the VF2671

algorithm from the NetworkX package for sub-graph matching.6672

Algorithm 1 Complete Multi-edge Sub-graph Matching (NP-hard)

Require multi-edge directional graphs Gw for the world and Gc for the command
Require referred object O for the command
Return matching referent targets R
1: R← {}
2: LiGw ← LineGraph(Gw)
3: LiGc ← LineGraph(Gc)
4: DiGM← VF2(LiGw, LiGc)
5: for gs ← DiGM.subgraph_isomorphisms_iter() do
6: isValid← True
7: for pairw, pairc ← gs.items() do
8: relw ← get_relations(pairw)
9: relc ← get_relations(pairc)
10: if not relw ∩ relc do
11: break
12: end for
13: if isValid do
14: node← get_correspond_node(O)
15: R← R+ {node}
16: end for
17: return R

E Models and Experiments Setups673

For our M-LSTM7 and GCN-LSTM8 models, we adapt code from the original repositories. For both models, we674

optimize for cross-entropy loss using Adam with default parameters [47]. The learning rate starts at 1e−4 and675

decays by 0.9 every 20,000 steps for the M-LSTM model. The learning rate starts at 8e−4 for the GCN-LSTM676

model with the same learning rate decaying schedule. We train for 200,000 steps, with batch size 2000 for677

the M-LSTM model, and train for 100 epochs with batch size 200 for the GCN-LSTM model. We choose the best678

model during training by the performance on a smaller development set of 2,000 examples, which is consistent679

with the training pipeline proposed in Ruis et al. [14] for gSCAN. For M-LSTM, we choose the kernel size for680

the CNN to be 7. For GCN-LSTM, we choose the number of message passing iterations to be 4. We adapt the681

code released by each paper, which only supports single-GPU training. The training time is about 3 days on a682

Standard GeForce RTX 2080 Ti GPU with 11GB memory. To foster reproducibility, we release our adapted683

evaluation scripts in our code repository.684

In generating random splits (Section 6.1), we randomly partition train/dev/test after command–world pairs are685

generated. As shown in Table 2, we generate more than 1M example–world pairs in total. Our Simple set is686

comparable to gSCAN [14]. However, our Simple set is smaller in size since gSCAN permutes based on agent’s687

relative direction against the referent target. Note that for 1-relative-clause and 2-relative-clauses,688

we down-sample our commands since we keep world per command approximately the same as gSCAN to ensure689

a fair comparison. See Appendix A for detailed dataset statistics. To evaluate our distractor sampling strategies,690

we regenerate a new dataset for 2-relative-clauses containing only random distractors and analyze model691

performance results. Finally, we combine all three subsets for all patterns and evaluate aggregated performance692

(see Table 3 for per pattern performance).693

6https://networkx.org/documentation/stable/reference/algorithms/isomorphism.vf2.
html

7https://github.com/LauraRuis/multimodal_seq2seq_gSCAN.
8https://github.com/HQ01/gSCAN_with_language_conditioned_embedding.
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Algorithm 2 Locally Optimized Multi-edge Sub-graph Matching (O(n2))

Require multi-edge directional graphs Gw for the world and Gc for the command
Require referred object O for the command
Return matching referent targets R
1: R← {}
2: for nw ← Gw.get_nodes() do
3: M← {}
4: relw ← nw.get_edges()
5: relo ← Gc.get_edges(O)
6: if |relo ∩ relw|==|relo| do
7: # found a potential candidate, checking nbrs
8: for nbr← nw.get_nbrs() do
9: for nc ← Gc.get_nodes() where nc!=O do
10: relnbr ← nbr.get_edges()
11: relc ← nc.get_edges()
12: if |relnbr ∩ relc|==|relc| do
13: # add nbr in to potential matching list
14: M[nc]← M[nc]+ nbr
15: isValid← True
16: for nc ← Gc.get_nodes() where nc!=O do
17: if |M[nc]|==0 do
18: isValid← False
19: break
20: if isValid && at_least_one_unique_for_each(M) do
21: R← R+ {nw}
22: end for
23: return R

F ReaSCAN Generation Workflow694

Figure 6 illustrates our main data generation workflow with an example with a single relational clause. The data695

generation workflow contains 7 main steps:696

• Step 1: We first sample a command pattern from the command generator. The command pattern697

contains the basic structure of the command as in Section 4.1.698

• Step 2: We fill out the command pattern by supplying its semantics and generate a fully-formed699

command.700

• Step 3: Using our simulator, we generate a shape world containing objects conforming to our701

command as well as distractors. We have four types of distractors, as described in Section 4.2.702

• Step 4: We then build a graph describing objects and their relations in the shape world generated703

from the previous step. Using our sub-graph matching algorithm (Appendix D), we validate whether704

there is only one referent target presented in the shape world grounding the command.705

• Step 5: If “yes”, we record the command–world pair. If “no”, we fall back to Step 3 and generate a706

new shape world.707

G ReaSCAN Examples708

Figure 7 shows more examples for different patterns of commands in ReaSCAN.709

H ReaSCAN as an Abstract Reasoning Challenge710

Figure 8 shows two simplified examples of how we can transform ReaSCAN into an abstract reasoning challenge711

following the Abstract Reasoning Corpus proposed by Chollet [48]. Instead of generating the action sequence712

based on a command–world pair, the task is now defined as predicting the output of a test input world, given713

multiple pairs of input–output worlds as training examples. This can be seen as a program induction or program714

synthesis task as well. Our pipeline is able to generate the reasoning logic involved in each task with natural715

language. This task mimics abstract reasoning tests for humans. To generate reasoning tasks, we first extend our716
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Figure 6: Data generation workflow with a simplified example.

current framework to generate multiple shape worlds for each command along with the position of the referent717

targets for each world. Then, we define some primitive actions (e.g., DRAW for changing color; CHANGE for718

changing shape) that can be operated on the referent targets. Finally, we generate a new set of shape worlds with719

operated referent targets.720

I Dataset Documentation721

We have made our dataset and the framework to generate the dataset publicly avaliable at https://github.722

com/frankaging/Reason-SCAN. We bear all responsibility in case of violation of rights. The dataset is723

released with Creative Commons Attribution 4.0 International License. Updates and fixes with the dataset can724

be found in our code repository. The first release is versioned as ReaSCANv1.0. Any subsequent releases will725

have higher version numbers.726

The dataset and its metadata can be found in the code repository. Additionally, we provide detailed steps727

about how to regenerate ReaSCAN in our code repository. Since the data generation framework is novel, it728

is self-contained as well. The dataset and its code repository will remain publicly available. We include our729

datasheets.730
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“pull the small green 
cylinder hesitantly”

'turn left', 'turn left', 
'walk', 'stay', 'walk', 
'stay', 'walk', 'stay'

“pull the red cylinder 
while zigzagging”

'walk', 'turn left', 'walk', 
'turn right', 'walk', 'turn 

left', 'walk', 'walk', 
'pull', 'pull'

“pull the cylinder 
cautiously”

'turn right', 'turn left', 
'turn right', 'turn right', 
'turn left', 'walk', 'turn 
left', 'turn right', 'turn 
right', 'turn left', 'walk'

“push the small square that 
is in the same row as the 
yellow circle hesitantly”

'turn left', 'turn left', 
'walk', 'stay', 'turn left', 

'walk', 'stay', 'walk', 'stay', 
'walk', 'stay', 'walk', 'stay', 

'push', 'stay'

“push the small circle that 
is inside of a blue box while 

zigzagging”

'turn left', 'turn left', 'walk', 
'turn left', 'walk', 'turn right', 
'walk', 'turn left', 'walk', 'turn 

right', 'walk', 'turn left', 'walk', 
'turn right', 'walk', 'push'

“push the small object that 
is in the same shape as a 

blue object while spinning”

'turn left', 'turn left', 'turn left', 
'turn left', 'walk', 'turn left', 

'turn left', 'turn left', 'turn left', 
'turn right', 'walk', 'turn left', 

'turn left', 'turn left', 'turn left', 
'walk'

“walk to the object that is in 
the same color as a small 

square and in the same row as a 
red circle hesitantly”

'walk', 'stay', 'walk', 
'stay', 'turn right', 
'walk', 'stay', 'walk', 

'stay'

“walk to the green object that 
is in the same column as a 

yellow square and in the same 
row as a red circle while 

spinning”

'turn left', 'turn left', 
'turn left', 'turn left', 
'turn left', 'turn left', 

'walk'

“walk to the red object that is 
in the same column as a blue 

cylinder and inside of a small 
red box cautiously”

'turn left', 'turn right', 
'turn right', 'turn left', 
'walk', 'turn right', 'turn 
left', 'turn right', 'turn 
right', 'turn left', 'walk'

Figure 7: ReaSCAN examples with varying command patterns. The navigation commands and the target action
sequences are in the grey boxes and green boxes respectively.
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Figure 8: Two simplified abstract reasoning challenges with ReaSCAN. The task mimics human reasoning test
where giving a set of input-output (input on the left and output on the right) pairs, the task taker needs to guess
the output for the last input. For each task, we provide one potential abstract reasoning to solve the task.
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Datasheet for ‘ReaSCAN: Compositional Reasoning in731

Language Grounding’732

A Motivation733

A.1 For what purpose was the dataset created? Was there a specific task in mind? Was734

there a specific gap that needed to be filled? Please provide a description735

The dataset was created as a new benchmark for evaluating compositional generalization of neural models by736

addressing the limitations of gSCAN. We find that gSCAN has three major limitations: (1) its set of instructions is737

so constrained that compositional interpretation is not required; (2) the distractor objects in its grounded scenarios738

are mostly not relevant for accurate language understanding; and (3) in many examples, not all modifiers in the739

command are required for successful navigation, which further erodes the need for compositional interpretation740

and inflates model performance scores.741

A.2 Who created this dataset (e.g., which team, research group) and on behalf of which742

entity (e.g., company, institution, organization)?743

The dataset was created by Zhengxuan Wu, Elisa Kreiss, and Christopher Potts at Stanford University, and744

Desmond C. Ong at National University of Singapore.745

A.3 Who funded the creation of the dataset? If there is an associated grant, please provide746

the name of the grantor and the grant name and number747

N/A.748

B Composition749

B.1 What do the instances that comprise the dataset represent (e.g., documents, photos,750

people, countries)? Are there multiple types of instances (e.g., movies, users, and751

ratings; people and interactions between them; nodes and edges)? Please provide a752

description.753

This dataset is a synthetic dataset. Each instance contains:754

1. A command–world pair where the command is a synthetic English sentence and the world is a synthetic755

n× n grid-worldm where we fix n = 6, using the open-sourced MiniGym from Open-AI.9 The world756

is represented by a list of objects that are present in the world. Each object is defined by a unique757

tensor.758

2. An agent initial position and facing direction,759

3. The position of the referent target760

4. The gold label, which is the correct action sequence the agent can execute to reach and operate on the761

referent target.762

B.2 Does the dataset contain all possible instances or is it a sample (not necessarily random)763

of instances from a larger set? If the dataset is a sample, then what is the larger set? Is764

the sample representative of the larger set (e.g., geographic coverage)? If so, please765

describe how this representativeness was validated/verified. If it is not representative of766

the larger set, please describe why not (e.g., to cover a more diverse range of instances,767

because instances were withheld or unavailable).768

ReaSCANv1.0 is provided in our project Github repository.10 It is sampled from a larger set. As our dataset769

provides a general framework that can scale up to much more examples, it reaches a point where regular770

computing resources might not be able to train with our dataset. As a result, we randomly sample a subset from771

our larger pool. We document known potential artifacts from our generation process in Appendix B.772

9https://github.com/maximecb/gym-minigrid
10https://github.com/frankaging/Reason-SCAN
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B.3 What data does each instance consist of? “Raw” data (e.g., unprocessed text or773

images)or features? In either case, please provide a description774

We provide details about our instances in Section B.1.775

B.4 Is there a label or target associated with each instance? If so, please provide a776

description.777

The gold label is the correct action sequence in English sentences where each word is separated by “,”. The778

agent can execute the action sequence to reach and operate on the referent target.779

B.5 Is any information missing from individual instances? If so, please provide a780

description, explaining why this information is missing (e.g., because it was unavailable).781

This does not include intentionally removed information, but might include, e.g.,782

redacted text.783

Everything is included. No data is missing.784

B.6 Are relationships between individual instances made explicit (e.g., users’ movie ratings,785

social network links)? If so, please describe how these relationships are made explicit.786

N/A.787

B.7 Are there recommended data splits (e.g., training, development/validation, testing)? If788

so, please provide a description of these splits, explaining the rationale behind them.789

As our dataset is designed for compositional generalization, we provide train/dev/test splits as well as composi-790

tional splits in our released dataset. We also provide scripts to generate these splits in our code repository.791

B.8 Are there any errors, sources of noise, or redundancies in the dataset? If so, please792

provide a description.793

N/A.794

B.9 Is the dataset self-contained, or does it link to or otherwise rely on external resources795

(e.g., websites, tweets, other datasets)?796

Yes, the dataset is self-contained.797

B.10 Does the dataset contain data that might be considered confidential (e.g., data that is798

protected by legal privilege or by doctorpatient confidentiality, data that includes the799

content of individuals non-public communications)? If so, please provide a description.800

No, this is a synthetic dataset.801

B.11 Does the dataset contain data that, if viewed directly, might be offensive, insulting,802

threatening, or might otherwise cause anxiety? If so, please describe why.803

No, this is a synthetic dataset containing synthetic navigation instructions in English and synthetic grid worlds.804

B.12 Does the dataset relate to people? If not, you may skip the remaining questions in this805

section.806

No, this is a synthetic dataset and does not contain any human label.807

B.13 Does the dataset identify any subpopulations (e.g., by age, gender)? If so, please808

describe how these subpopulations are identified and provide a description of their809

respective distributions within the dataset.810

N/A.811
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B.14 Is it possible to identify individuals (i.e., one or more natural persons), either directly812

or indirectly (i.e., in combination with other data) from the dataset? If so, please813

describe how.814

N/A.815

B.15 Does the dataset contain data that might be considered sensitive in any way (e.g., data816

that reveals racial or ethnic origins, sexual orientations, religious beliefs, political817

opinions or union memberships, or locations; financial or health data; biometric or818

genetic data; forms of government identification, such as social security numbers;819

criminal history)?820

N/A.821

C Collection Process822

N/A. This is a synthetic dataset containing synthetic navigation instructions in English and synthetic grid worlds.823

As a result, we do not collect any human data.824

D Preprocessing/cleaning/labeling825

D.1 Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or826

bucketing, tokenization, part-of-speech tagging, SIFT feature extraction, removal of827

instances, processing of missing values)? If so, please provide a description. If not, you828

may skip the remainder of the questions in this section.829

No, the synthetic dataset is provided as-is.830

D.2 Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g., to831

support unanticipated future uses)? If so, please provide a link or other access point to832

the “raw” data.833

N/A.834

D.3 Is the software used to preprocess/clean/label the instances available? If so, please835

provide a link or other access point836

N/A.837

E Use838

E.1 Has the dataset been used for any tasks already? If so, please provide a description.839

No, this is our first release of the dataset.840

E.2 Is there a repository that links to any or all papers or systems that use the dataset? If so,841

please provide a link or other access point.842

No, this is our first release of the dataset.843

E.3 What (other) tasks could the dataset be used for?844

This dataset is designed for evaluating compositional generalization of neural models as a synthetic navigation845

task. This task can be used for referring expression resolution as well.846
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E.4 Is there anything about the composition of the dataset or the way it was collected and847

preprocessed/cleaned/labeled that might impact future uses? For example, is there848

anything that a future user might need to know to avoid uses that could result in unfair849

treatment of individuals or groups (e.g., stereotyping, quality of service issues) or other850

undesirable harms (e.g., financial harms, legal risks) If so, please provide a description.851

Is there anything a future user could do to mitigate these undesirable harms?852

There is minimal risk for harm: this is a synthetic dataset and does not contain any human label.853

E.5 Are there tasks for which the dataset should not be used? If so, please provide a854

description.855

No, this dataset is used for training neural models that solve the synthetic task posed by the dataset only. The856

dataset should not be used for any real-world applications.857

F Distribution858

F.1 Will the dataset be distributed to third parties outside of the entity (e.g., company,859

institution, organization) on behalf of which the dataset was created? If so, please860

provide a description.861

Yes, the dataset is publicly available on the internet.862

F.2 How will the dataset will be distributed (e.g., tarball on website, API, GitHub)? Does the863

dataset have a digital object identifier (DOI)?864

The dataset is publicly avaliable at our Github repository.865

F.3 When will the dataset be distributed?866

The dataset is first released in 2021.867

F.4 Will the dataset be distributed under a copyright or other intellectual property (IP)868

license, and/or under applicable terms of use (ToU)? If so, please describe this license869

and/or ToU, and provide a link or other access point to, or otherwise reproduce, any870

relevant licensing terms or ToU, as well as any fees associated with these restrictions.871

Our dataset has a Creative Commons Attribution 4.0 International License. The dataset is publicly available on872

the internet. People are allowed to use our scripts to generate their own version of ReaSCAN as well.873

F.5 Do any export controls or other regulatory restrictions apply to the dataset or to874

individual instances? If so, please describe these restrictions, and provide a link or other875

access point to, or otherwise reproduce, any supporting documentation.876

Unknown.877

G Maintenance878

G.1 Who is supporting/hosting/maintaining the dataset?879

Zhengxuan Wu is supporting/maintaining the dataset.880

G.2 How can the owner/curator/manager of the dataset be contacted (e.g., email address)?881

wuzhengx@stanford.edu.882

G.3 Is there an erratum? If so, please provide a link or other access point.883

There is not an explicit erratum, but updates and fixes with the dataset can be found in our Github repository.884

The first release is versioned as ReaSCANv1.0. Any subsequent releases will have higher version numbers.885
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G.4 Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete886

instances)? If so, please describe how often, by whom, and how updates will be887

communicated to users (e.g., mailing list, GitHub)?888

This will be posted on the dataset Github repository.889

G.5 If the dataset relates to people, are there applicable limits on the retention of the data890

associated with the instances (e.g., were individuals in question told that their data891

would be retained for a fixed period of time and then deleted)? If so, please describe892

these limits and explain how they will be enforced.893

N/A.894

G.6 Will older versions of the dataset continue to be supported/hosted/maintained? If so,895

please describe how. If not, please describe how its obsolescence will be communicated896

to users.897

N/A.898

G.7 If others want to extend/augment/build on/contribute to the dataset, is there a899

mechanism for them to do so? If so, please provide a description. Will these900

contributions be validated/verified? If so, please describe how. If not, why not? Is there901

a process for communicating/distributing these contributions to other users? If so,902

please provide a description.903

Others may do so and should contact the original authors about incorporating fixes/extensions.904
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	Are there recommended data splits (e.g., training, development/validation, testing)? If so, please provide a description of these splits, explaining the rationale behind them.
	Are there any errors, sources of noise, or redundancies in the dataset? If so, please provide a description.
	Is the dataset self-contained, or does it link to or otherwise rely on external resources (e.g., websites, tweets, other datasets)?
	Does the dataset contain data that might be considered confidential (e.g., data that is protected by legal privilege or by doctorpatient confidentiality, data that includes the content of individuals non-public communications)? If so, please provide a description.
	Does the dataset contain data that, if viewed directly, might be offensive, insulting, threatening, or might otherwise cause anxiety? If so, please describe why.
	Does the dataset relate to people? If not, you may skip the remaining questions in this section.
	Does the dataset identify any subpopulations (e.g., by age, gender)? If so, please describe how these subpopulations are identified and provide a description of their respective distributions within the dataset.
	Is it possible to identify individuals (i.e., one or more natural persons), either directly or indirectly (i.e., in combination with other data) from the dataset? If so, please describe how.
	Does the dataset contain data that might be considered sensitive in any way (e.g., data that reveals racial or ethnic origins, sexual orientations, religious beliefs, political opinions or union memberships, or locations; financial or health data; biometric or genetic data; forms of government identification, such as social security numbers; criminal history)?
	Collection Process
	Preprocessing/cleaning/labeling
	Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucketing, tokenization, part-of-speech tagging, SIFT feature extraction, removal of instances, processing of missing values)? If so, please provide a description. If not, you may skip the remainder of the questions in this section.
	Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g., to support unanticipated future uses)? If so, please provide a link or other access point to the “raw” data.
	Is the software used to preprocess/clean/label the instances available? If so, please provide a link or other access point
	Use
	Has the dataset been used for any tasks already? If so, please provide a description.
	Is there a repository that links to any or all papers or systems that use the dataset? If so, please provide a link or other access point.
	What (other) tasks could the dataset be used for?
	Is there anything about the composition of the dataset or the way it was collected and preprocessed/cleaned/labeled that might impact future uses? For example, is there anything that a future user might need to know to avoid uses that could result in unfair treatment of individuals or groups (e.g., stereotyping, quality of service issues) or other undesirable harms (e.g., financial harms, legal risks) If so, please provide a description. Is there anything a future user could do to mitigate these undesirable harms?
	Are there tasks for which the dataset should not be used? If so, please provide a description.

	Distribution
	Will the dataset be distributed to third parties outside of the entity (e.g., company, institution, organization) on behalf of which the dataset was created? If so, please provide a description.
	How will the dataset will be distributed (e.g., tarball on website, API, GitHub)? Does the dataset have a digital object identifier (DOI)?
	When will the dataset be distributed?
	Will the dataset be distributed under a copyright or other intellectual property (IP) license, and/or under applicable terms of use (ToU)? If so, please describe this license and/or ToU, and provide a link or other access point to, or otherwise reproduce, any relevant licensing terms or ToU, as well as any fees associated with these restrictions.
	Do any export controls or other regulatory restrictions apply to the dataset or to individual instances? If so, please describe these restrictions, and provide a link or other access point to, or otherwise reproduce, any supporting documentation.


	Maintenance
	Who is supporting/hosting/maintaining the dataset?
	How can the owner/curator/manager of the dataset be contacted (e.g., email address)?
	Is there an erratum? If so, please provide a link or other access point.
	Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete instances)? If so, please describe how often, by whom, and how updates will be communicated to users (e.g., mailing list, GitHub)?
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	If others want to extend/augment/build on/contribute to the dataset, is there a mechanism for them to do so? If so, please provide a description. Will these contributions be validated/verified? If so, please describe how. If not, why not? Is there a process for communicating/distributing these contributions to other users? If so, please provide a description.










