ReaSCAN: Compositional Reasoning in Language Grounding

Zhengxuan Wu (Stanford University), Elisa Kreiss (Stanford University) Desmond C. Ong (National University of Singapore) Christopher Potts (Stanford University)

Elisa Kreiss

Christopher Potts

Agency for Science, Technology and Research SINGAPORE

Compositional Generalization in Language

- An abstract example.
- An real-world example.

The ability to understand novel composites of known concepts.

Compositional Generalization in Language

- An abstract example.
- An real-world example

The ability to understand novel composites of known concepts.

Compositional Generalization in Language

- An abstract example.
- An real-world example.

The ability to understand novel composites of known concepts.

Known Combinations of Concepts

"hand me the toy that is in the same color as the brush"

Novel Combinations of Concepts

"hand me the bag that is in the same color as the toy"

- Generalization Splits & Grounded.
- Syntax Learning & Complexity.
- Extensibility

	Generalizatio	n	Syntax	Active	Scalable
Benchmarks	Splits	Grounded	Learning	Distractors	Difficulty
SCAN (Lake & Baroni, 2018)					
gSCAN (Ruis et al., 2019)	<u> </u>	<u></u>			
ReaSCAN (Ours)	<u> </u>	\odot	<u> </u>	\sim	<u></u>

- Generalization Splits & Grounded.
- Syntax Learning & Complexity.
- Extensibility

	Generalization		Syntax	Active	Scalable
Benchmarks	Splits	Grounded	Learning	Distractors	Difficulty
SCAN (Lake & Baroni, 2018)			0		
gSCAN (Ruis et al., 2019)	<u></u>	<u> </u>			
ReaSCAN (Ours)		\odot	\odot	\sim	\bigcirc

- Generalization Splits & Grounded
- Syntax Learning & Complexity.
- Extensibility

Generalization			Syntax	Active	Scalable
Benchmarks	Splits	Grounded	Learning	Distractors	Difficulty
SCAN (Lake & Baroni, 2018)	•				
gSCAN (Ruis et al., 2019)	\sim	<u></u>			
ReaSCAN (Ours)	<u> </u>	\odot	<u> </u>	<u></u>	<u></u>

- Generalization Splits & Grounded.
- Syntax Learning & Complexity
- Extensibility.

	Generalization		Syntax	Active	Scalable
Benchmarks	Splits	Grounded	Learning	Distractors	Difficulty
SCAN (Lake & Baroni, 2018)					
gSCAN (Ruis et al., 2019)	\sim	\sim			
ReaSCAN (Ours)	<u> </u>	<u></u>	<u> </u>	\sim	<u></u>

ReaSCAN Overview

- Address limitations of previous works.
- More scalable and complex set-up

gSCAN Command: "pull the cylinder cautiously"

Our Command: "pull the object that is in the same column as the big green square cautiously"

- Addressing the issue where not all attributes are needed to identify the referent target in test splits.
- Understanding inter-object relations (six) and syntax of commands are necessary for resolving the target.
- Active distractor sampling strategies.
- Commands with extensible relative clauses with conjunctions.

ReaSCAN Overview

- Address limitations of previous works
- More scalable and complex set-up.

gSCAN Command: "pull the cylinder cautiously"

Our Command: "pull the object that is in the same column as the big green square cautiously"

- Addressing the issue where not all attributes are needed to identify the referent target in test splits.
- Understanding inter-object relations (six) and syntax of commands are necessary for resolving the target.
- Active distractor sampling strategies.
- Commands with extensible relative clauses with conjunctions.

ReaSCAN's Testing Split

• Overview.

- Testing splits A.
- Testing splits B & C.

Split	Description	Adapted from gSCAN?
A1	Novel color modifier	✓
A2	Novel color attribute	\checkmark
A3	Novel size modifier	\checkmark
B1	Novel co-occurrence of objects	
B2	Novel co-occurrence of relations	
C1	Novel conjunctive clause length	
C2	Novel relative clauses	

ReaSCAN's Testing Split

- Overview
- Testing splits A.
- Testing splits B & C.

seen unseen

A1 & A3: Novel Modifier

Testing splits contain unseen composites of size, color and shape expressions in command.

A2: Novel Attribute

Testing splits contain unseen composites of size, color and shape for the referent target.

ReaSCAN's Testing Split

- Overview.
- Testing splits A.
- Testing splits B & C.

seen unseen

B: Novel Co-occurrence of Concept

Testing splits contain unseen co-occurrence of object expressions or object relations.

C: Novel Clause Structure

Testing splits contain commands with one more conjunctive clauses, or 2 recursive relative clauses.

Model's Performance Results

• Overview.

• gSCAN comparison.

Salita	Exact Match% (±Δ _{split-rand} %)		
Spirts	GCN-LSTM		
Random (Seen)	99.0% (-0.00%)		
A1*: novel color modifier	92.3% (-6.78%)		
A2*: novel color attribute	42.1% (-57.5%)		
B2: novel co-occurrence of relations	52.8% (-46.6%)		
C1: novel conjunctive clause length	57.0% (-42.4%)		
C2: novel relative clauses	22.1% (-77.7%)		

*gSCAN has similar splits but these are solved nearly perfectly by the GCN-LSTM (Gao et al. 2020) model.

Model's Performance Results

• Overview.

• gSCAN comparison.

Salita	Exact Match% (±4 _{split-rand} %)		
Spirts	GCN-LSTM		
Random (Seen)	99.0% (-0.00%)		
A1*: novel color modifier	92.3% (-6.78%)		
A2*: novel color attribute	42.1% (-57.5%)		
B2: novel co-occurrence of relations	52.8% (-46.6%)		
C1: novel conjunctive clause length	57.0% (-42.4%)		
C2: novel relative clauses	22.1% (-77.7%)		

*gSCAN has similar splits but these are solved nearly perfectly by the GCN-LSTM (Gao et al. 2020) model.

Model's Performance Results

• Overview.

• gSCAN comparison.

Salita	Exact Match% (±Δ _{split-rand} %)		
Spirts	GCN-LSTM		
Random (Seen)	99.0% (-0.00%)		
A1*: novel color modifier	92.3% (-6.78%)		
A2*: novel color attribute	42.1% (-57.5%)		
B2: novel co-occurrence of relations	52.8% (-46.6%)		
C1: novel conjunctive clause length	57.0% (-42.4%)		
C2: novel relative clauses	22.1% (-77.7%)		

*gSCAN has similar splits but these are solved nearly perfectly by the GCN-LSTM (Gao et al. 2020) model.

Accept the ReaSCAN Challenge!

7 compositional generalization testing splits, and provide scripts for customized splits!

Open-source data generation framework.

ReaSCAN-v1.0 can be downloaded in our project landing page.

https://reascan.github.io/

Project Website