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Abstract
In many areas, we have well-founded insights
about causal structure that would be useful to
bring into our trained models while still allow-
ing them to learn in a data-driven fashion. To
achieve this, we present the new method of inter-
change intervention training (IIT). In IIT, we (1)
align variables in the causal model with represen-
tations in the neural model and (2) train a neural
model to match the counterfactual behavior of
the causal model on a base input when aligned
representations in both models are set to be the
value they would be for a second source input.
IIT is fully differentiable, flexibly combines with
other objectives, and guarantees that the target
causal model is a causal abstraction of the neural
model when its loss is minimized. We evaluate
IIT on a structured vision task (MNIST-PVR) and
a navigational instruction task (ReaSCAN). We
compare IIT against multi-task training objectives
and data augmentation. In all our experiments,
IIT achieves the best results and produces neural
models that are more interpretable in the sense
that they realize the target causal model.

1. Introduction
In many domains, we have well-founded insights about
causal structure that we can express in symbolic terms,
ranging from commonsense intuitions about how the world
works to advanced scientific knowledge. These insights
have the potential to make up for gaps in available data,
or more generally to provide useful inductive biases. Can
we bring these insights into our models while still allowing
them to learn in a data-driven fashion?

In this paper, we present interchange intervention training
(IIT), a new method that trains a neural network to realize
the abstract structure of a causal model. In IIT, we (1) align
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the variables in a causal model C with the representations
in a neural model N and (2) train N to have the counter-
factual behavior of C by performing aligned interchange
interventions (swapping of internal states created for differ-
ent inputs) onN using C’s counterfactual output as the gold
label for the counterfactual prediction of N . IIT objectives
are differentiable and guarantee that, where the loss is mini-
mized, the target causal model is a causal abstraction of the
neural network in the sense of Beckers & Halpern (2019).

IIT is an extension of the causal abstraction analysis of
Geiger et al. (2021), which can be placed under the broader
rubric of structural evaluations of neural models, which
includes probing and many kinds of feature attribution. Our
central point of differentiation from this prior work is that we
go beyond passive study of static models, by pushing them
to learn specific causal structures as part of optimization.
This allows for a productive interplay between model anal-
ysis and model improvement: we not only assess whether
models have systematic, interpretable internal structure but
also push them to acquire such structure.

We evaluate IIT in two very different contexts: (1) ResNet
trained on a vision task where one part of an image “points”
to another (MNIST-PVR) and (2) a CNN-LSTM model
trained to produce action sequences in a grid world given a
natural language command (ReaSCAN). In both cases, we
define high-level causal models that capture aspects of the
problem and that are aligned with our neural models, and
we define IIT training objectives using those causal models.

For both case studies, we report two kinds of evaluation:
traditional behavioral evaluations using systematic general-
ization tasks that assess whether a model has learned a truly
general solution, and structural evaluations that directly as-
sess the interpretability of our models by evaluating whether
they realize the target causal model. We compare IIT against
multi-task training objectives and data augmentation meth-
ods defined to make use of our causal models, finding that
IIT leads to models that both perform better on systematic
generalization benchmarks and are more interpretable.1

1We release our code at https://github.com/frankaging/
Interchange-Intervention-Training.

https://github.com/frankaging/Interchange-Intervention-Training
https://github.com/frankaging/Interchange-Intervention-Training
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2. Related Work
Probes Probes are supervised or unsupervised models that
can be used to gain an understanding of what is encoded
in the internal representations of neural networks (Hupkes
et al., 2018; Peters et al., 2018; Tenney et al., 2019; Clark
et al., 2019). Probes have yielded important insights about
what models learn to encode. However, probes are funda-
mentally limited in a way that is central to our present goals:
there is no guarantee that probed information plays a causal
role in the network’s behavior (Ravichander et al., 2020;
Elazar et al., 2020; Geiger et al., 2021; 2020).

Feature Attribution In contrast to probes, gradient-based
feature attribution methods (Zeiler & Fergus, 2014; Sprin-
genberg et al., 2014; Shrikumar et al., 2016; Binder et al.,
2016) generally do measure causal properties (Chattopad-
hyay et al., 2019). For example, Geiger et al. (2021) note
that the integrated gradients method of Sundararajan et al.
(2017) computes the individual causal effect of neurons (Im-
bens & Rubin, 2015). In comparison with our proposal, the
main limitation of these methods is that (by definition) they
passively study trained networks rather than allowing for
active improvements of them (though see Erion et al. 2021
for a path from attribution to improved optimization).

Intervention-Based Analyses Intervention-Based analy-
ses seek to provide rich characterizations of model repre-
sentations (like probing) while also supporting inferences
about the causal role that those representations play (like
feature attribution). In intervention-based analysis, one
actively changes the values of model representations in sys-
tematic ways and studies the effects. Such interventions
can be applied to input representations in order to measure
the effect on the output representation (Feder et al., 2021;
Pryzant et al., 2021), or on network internal representa-
tions to characterize how these representations mediate the
causal relationships between inputs and outputs (Vig et al.,
2020; Soulos et al., 2020; Ravfogel et al., 2020; Elazar et al.,
2020; Giulianelli et al., 2018; Geiger et al., 2020; 2021).
In the context of neural network analysis, this provides a
very powerful tool-kit for understanding a model’s causal
structure, since an enormous number of diverse and finely
controlled intervention experiments can be performed. We
build directly on these methods by extending them to the
optimization process.

Multi-Task Training Multi-task training is the practice
of jointly training a model against a set of learning tasks
to improve data efficiency and increase model robustness
(Ruder, 2017; Zhang & Yang, 2017; Crawshaw, 2020). This
can be thought of in terms of supervised probing. In stan-
dard supervised probing, one trains the probe using internal
representations from the target model while keeping the

target model frozen. In multi-task training, we allow the
target model’s parameters to be changed by the probing pro-
cess. This provides a natural point of comparison with our
proposal for IIT, where we use our target symbolic causal
model to define multi-task training objectives.

Data Augmentation Data augmentation is the practice of
enhancing training sets by modifying existing examples to
generate new ones (Perez & Wang, 2017; Shorten & Khosh-
goftaar, 2019; Kaushik et al., 2019; Liu et al., 2021). For us,
data augmentation is another natural comparison point be-
cause we can use a target symbolic causal model to generate
additional data. Crucially, IIT involves interchanging inter-
nal network representations, while our data augmentation
method only involves interchanging parts of inputs.

3. Interchange Intervention Training
Our goal is to train a neural network to have an internal
causal structure that realizes a high-level causal model. To
concretize this goal, we draw on two strands of work on
causality: (1) formal interventionist theories of causality
(Spirtes et al., 2001; Pearl, 2001), in which causal processes
are identified with the effect of interventions, and (2) theo-
ries of abstraction (Beckers & Halpern, 2019; Beckers et al.,
2020; Chalupka et al., 2016; Rubenstein et al., 2017), where
relationships between two causal processes are determined
by the presence of systematic correspondences between the
effects of interventions. The key insight is that having a par-
ticular causal structure is a matter of satisfying a number of
counterfactual statements about the effect of interventions
(Hitchcock, 2001). The present section defines this process
formally, and Figure 1 illustrates all the concepts with a
self-contained example.

Structured Causal Models We introduce a minimal nota-
tion for structured causal models here. We define a structural
causal modelM to consist of variables V , and, for each vari-
able V ∈ V , a set of values Val(V ), a set of parents PAV ,
and a structured equation FV that sets the value of V based
on the setting of its parents. We denote the set of variables
with no parents as VIn and those with no children VOut. A
structural causal modelM = (V,PA,Val, F ) can represent
both symbolic computations and neural networks.

Given a setting of an input ∈ Val(VIn) and variables
V ⊆ V , we define GETVALS(M, input,V) ∈ Val(V)
to be the setting of V determined by the setting input and
modelM. For example, V could correspond to a layer in
a neural network, and GETVALS(M, input,V) then de-
notes the particular values that V takes on when the model
M processes input.

For a set of variables V and a setting for those variables v ∈
Val(V), we defineMV←v to be the causal model identical
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to M, except that the structured equations for V are set
to a constant value v.2 This corresponds closely to the do
operator of Pearl (2001), which characterizes interventions
on models in the service of exploring hypothetical states.

Interchange Interventions With the above definitions in
place, we can straightforwardly characterize the interchange
interventions of Geiger et al. (2019), in which a modelM
is used to process two different inputs, source and base,
and then a particular internal state obtained by processing
source is used in place of the corresponding internal state
obtained by base. For a given set of variables V,

MV←GETVALS(M,source,V)

is a version ofM with the values of V set to those obtained
by processing source. In addition,

GETVALS(M,base,VOut)

is the setting of the outputs VOut obtained by processing
base with modelM. When we put these two steps together,
we obtain the interchange intervention:

INTINV(M,base, source,V)
def
=

GETVALS(MV←GETVALS(M,source,V),base,VOut) (1)

In short, the interchange intervention provides the output of
the modelM for the input base, except the variables V are
set to the values they would have if source were the input.

Causal Abstraction Relationships Suppose we have a
high-level model MH and a low-level model ML with
identical input spaces and a predetermined mapping of out-
put values from the low to high level, κ (for example, if
the low level model produces a probability distribution over
output classes, then κ could be the arg max function, which
selects the highest probability class). Further suppose we
have an alignment Π mapping intermediate variables in VH
to non-overlapping subsets of variables in VL. Consider
some intermediate variable VH and defineM∗H to beMH
with every variable marginalized other than VIn, VOut, and
VH . We can use the definition of interchange interventions
to define what it means forML andMH to be in a causal
abstraction relationship, namely, for all b, s ∈ VIn:

INTINV(M∗H,b, s, VH) =

κ
(
INTINV(ML,b, s,Π(VH))

)
(2)

This is in fact a constructive abstraction relationship in
the sense of Beckers & Halpern (2019), in which aligned
interventions on the low-level model and high-level model

2For neural models trained with IIT, this is not just a simple
constant, but rather a computation graph, as discussed below.

have the same effect. This is especially suited for situations
in which we seek to relate small symbolic models with large
neural models consisting of numerous high-dimensional
representations.

Abstraction and Interpretability Causal abstraction
analysis is not a story about the reasoning a neural net-
work might use to achieve its behavior, but instead is an
intervention-based method that determines how it does, in
fact, achieve its behavior. We can interpret the semantic con-
tent of neural representations using the high-level variables
they are aligned with, and understand how those neural rep-
resentations are composed using the high-level parenthood
relation. Simply put, when a high-level causal model is an
abstraction of a neural network, it is a faithful interpretation
(Lipton, 2018; Jacovi & Goldberg, 2020) of the network.

Interchange Intervention Accuracy To quantify partial
success when it comes to causal abstraction relationships,
we measure the percentage of aligned interchange interven-
tions that produce the same output, reporting this as the
interchange intervention accuracy (INTINVACC):

INTINVACC(MH,ML, VH ,Π)
def
=

1

|Val(VIn)|2
∑

b,s∈Val(VIn)

I
[
INTINV(M∗H,b, s, VH) =

κ
(
INTINV(ML,b, s,Π(VH))

)]
(3)

Where every pair of inputs b and s is considered, and
INTINVACC is 1, the two models are in the causal abstrac-
tion relationship. However, we often only approximate this
by evaluating a set of randomly sampled pairs of inputs, due
to the enormous space of input pairs.

INTINVACC provides a natural metric for quantifying the
interpretability of a neural network in the following sense:
when INTINVACC is 1, the causal model is an explanation
of how the network behaves, providing a very clear window
into the network itself. In practice, we rarely observe per-
fect INTINVACC in complex networks, but we can still say
that the higher the value of INTINVACC, the more we have
license to reason about the high-level causal model instead
of reasoning directly about the low-level network. In this
way, the causal model provides an interpretable proxy for
the network itself.

IIT Loss Functions The definition of IIT for high-level
models with one intermediate variable falls out directly from
the causal abstraction definition:∑

b,s∈VIn

LOSS
(

INTINV(C,b, s, V ),

INTINV(N θ,b, s,Π(V ))
)

(4)
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X1 X2

H1 = W1[x1, x2] H2 = W2[x1, x2]

Y = w[h1;h2] + b

B1 B2

V1 = b1 V2 = b2

O = b1 ∧ b2

(a) A linear network with unspecified weights (left) and a symbolic
causal model that computes boolean conjunction (right). An align-
ment between the two is denoted by dashed lines. The causal model
is an abstraction of the network when, for both V1 and V2, aligned
interchange interventions on network and causal model result in
the same output on all 16 ordered pairs of inputs. (The aligned
intervention pair (b, s) in general differs from (s,b).)
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(b) We define a network with initial parameters W1 = [0.45, 0.05],
W2 = [0.05, 0.5], output bias b = −1, and output weights w =
[1, 1]. Input values are −1 for False and 1 for True. With the initial
weights, the network has perfect behavioral accuracy, predicting
true (red) iff both its inputs are 1, otherwise it predicts false (blue).
Although correct when run on the four inputs (T, T), (T, F), (F, T),
(F, F), the interchange intervention accuracy is 81.25%: between
the two high-level variables V1 and V2, there are six ordered pairs of
inputs where performing aligned interchange interventions results
in the causal model and neural network producing different outputs
(see figure 1c for one such pair).
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(c) An illustration of an interchange intervention training update,
where an intervened network is trained to predict the intervened
output of the causal model. It can be seen that the intervention puts
the network in a state that could not be achieved with any input
representation.

Require: High-level and low-level modelsMH andML

with variables VH and VL, an alignment Π that maps a
VH ∈ VH to a VL ⊆ VL, training dataset D
1:MH .eval()
2:ML.train()
3: while not converged do
4: for (b, s) in enumerate(D) do // base and source
5: VH ∼ VH // sample a high-level variable
6: VL = Π(VH) // aligned low-level variables
7: with no grad:
8: aH = GETVALS(MH , s, VH )
9: oH = GETVALS(MH

VH←aH , b, VOut) // label
10: aL = GETVALS(ML, s, VL)
11: oL = GETVALS(ML

VL←aL
, b, VOut) // pred

12: LIIT = LOSS(oH , oL)
13: L = LIIT + LOthers // combine with other losses
14: L.backward()
15: Update model parameters with gradients

(d) Pseudocode for interchange intervention training.
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(e) The network defined in figure 1b after the IIT training update from figure 1c has been applied, resulting in a network with 100%
interchange intervention accuracy (though still nonzero loss), while maintaining the same behavior. The new network has parameters
W1 = [0.5012, 0.05], W2 = [0.5512, 0.05], bias b = −0.9488, and output weights w = [1.0231, 1.0256].

Figure 1. Interchange intervention training example. NetworkN∧ performs boolean conjunction with perfect accuracy, or, equivalently, it
agrees with C∧ on the four possible inputs (figure 1b). However, C∧ is not a causal abstraction ofN∧ under this alignment, because there
are aligned interchange interventions that result in N∧ and C∧ producing different outputs, meaning that the internal dynamics of the
network do not realize the structure of the causal model. To quantify this, we note that the interchange intervention accuracy (Eqn. 3) is
81.25%. After a single interchange intervention training update (figure 1c, figure 1d), this is fixed: all aligned interchange interventions
result in the same output (the interchange intervention accuracy is now 1), so C∧ has become a causal abstraction ofN∧ (figure 1e).
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where C is the high-level causal model, V is a high-level
variable, N θ is the low-level neural network with learned
parameters θ, Π(V ) is a set of low-level variables (neurons)
that are aligned with V , and LOSS is some loss function
VOut × VOut → R+. Observe that we do not apply the
output map κ, because the loss function takes in the network
logits directly.

The crucial feature of an IIT update is that the interchange
intervention intertwines two computation graphs, one gener-
ated by the forward pass for the base input and one by the
forward pass for the source input. This means that when
backpropagation is performed with the IIT loss objective,
updates are applied as they are in regular training, starting
from the output representation and proceeding towards the
input representations. However, when the intervention site
is reached, this process bifurcates, and weights receive two
updates, once fromN θ processing the input base, and once
fromN θ processing source. In our toy example (figure 1c),
the network is too small to observe this double update, but
the networks in our two case studies are not. (See figure 2,
which exemplifies such a process.)

An important formal property of IIT is that, if Eqn. 4 is
minimized, then C and N θ stand in the causal abstraction
relation Eqn. 2. See Appendix A for a brief proof of this
result. (The reverse does not hold; C can be a causal ab-
straction of N θ without the loss being minimized. Figure 1
is an example. This is a desirable property of the method,
since we do not expect our loss functions to be minimized
in general.)

Example Figure 1 provides an example of interchange
intervention training, in which a causal model C∧ of boolean
conjunction is aligned with a one-layer linear network N θ

∧,
where θ = {W1,W2, b, w}, as in figure 1b.

At the start,N θ
∧ is perfect in terms of its input–output behav-

ior but does not conform to the counterfactual behavior of
C∧. In other words, the regular behavioral learning objective
is met, but the interchange intervention training objective is
not; interchange intervention accuracy (Eqn. 3) is 81.25.

The figure depicts one interchange intervention training
update (figure 1c), which results in a network that satisfies
both objectives (figure 1e): N θ

∧ now stands in the causal
abstraction relation to C∧ (interchange intervention accuracy
is now 1).

4. MNIST Pointer-Value Retrieval
Our first benchmark is MNIST Pointer-Value Retrieval
(MNIST-PVR; Zhang et al. 2021), a visual reasoning task
constructed using the MNIST dataset (LeCun et al., 2010).
An input i = (iTL, iTR, iBL, iBR) consists of four MNIST
images (handwritten digits) arranged in a grid. The top left

image iTL acts as a pointer that picks out one of the three
other images.

Symbolic Causal Structure Our target causal model will
abstract away from the details of how to identify the hand-
written digit in an image, focusing just on the reasoning
about pointers. Formally, we define a causal model CPVR =
(V,PA,Val, F ) that computes the label for each of the four
MNIST images using an oracle OMNIST with a look-up table
to select the correct label based on the pointer. The vari-
ables are V = {ITL, ITR, IBL, IBR, YTL, YTR, YBL, YBR, O}
and the values assigned by Val are the MNIST training
images for the four input variables ITL, ITR, IBL, IBR, and
the set of numbers 0–9 for all other variables. The parents
are defined such that PAIw = ∅ and PAYw

= {Iw} for all
w ∈ {TR,TL,BR,BL}, and PAO = {YTL, YTR, YBL, YBR}.
The structured equations are

FYTL(iTL) = OMNIST(iTL)
FYTR(iTR) = OMNIST(iTR)
FYBL(iBL) = OMNIST(iBL)
FYBR(iBR) = OMNIST(iBR)

FO(yTL, yTR, yBL, yBR) =
yTR yTL ∈ {0, 1, 2, 3}
yBL yTL ∈ {4, 5, 6}
yBR yTL ∈ {7, 8, 9}

Systematic Generalization The train/test split designed
by Zhang et al. (2021) creates a distributional shift between
the training and testing data by removing training exam-
ples where either OMNIST(iTR) ∈ {1, 2, 3}, OMNIST(iBL) ∈
{4, 5, 6}, or OMNIST(iBR) ∈ {0, 7, 8, 9}. This evaluates
where models can systematically generalize, learning the
general structure of the problem rather than memorizing
many special cases.

Neural Network We trained ResNet18 using the model
from PyTorch vision. This is the deep residual network
(He et al., 2016) baseline used by Zhang et al. (2021) on
the MNIST-PVR dataset, and we adopt their hyperparam-
eters. We call this model N θ

PVR, where θ abbreviates the
parameters.

Alignments In our experiments, we align the neural rep-
resentations ofN θ

PVR with the symbolic variables of CPVR by
partitioning the layer resulting from the first application of
max-pooling into quadrants QTL,QTR,QBL,QBR which are
aligned with the variables YTL, YTR, YBL, YBR. In initial ex-
perimentation, we found that the layers must be partitioned
such that each quadrant is directly above its corresponding
input. This is likely due to the locality of convolution op-
erators. We also found that aligning layers closer to the
classifier head was ineffective.

Interchange Intervention Training For each intermedi-
ate variable Yw ∈ {YTL, YTR, YBL, YBR}, we introduce an
IIT objective that optimizes forN θ

PVR implementing the sub-
model of CPVR where the three intermediate variables that



Inducing Causal Structure for Interpretable Neural Networks

9 9

9 7

7

7 0

7 2

2
LOGITS LOGITS

Figure 2. An illustration of an IIT update where a neural network (right) is trained to realize a causal model (left) that solves the PVR-
MNIST task. Solid lines are feed-forward connections, dashed lines are interchange interventions, red lines are the flow of backpropagation.
Observe that when backpropagation reaches the interchange intervention, it flows into both the source input’s computation graph and the
base input’s graph, updating the weights below the interchange intervention twice.

aren’t Yw are marginalized out:∑
b,s∈MNIST-PVR

CE
(

INTINV(CPVR,b, s, Yw),

INTINV(N θ
PVR,b, s,Qw))

)
(5)

where CE is the cross-entropy loss and MNIST-PVR is the
dataset. We visualize an IIT update to N θ

PVR in figure 2.

Typed Interchange Intervention Training We make fur-
ther use of the causal model by observing that the intermedi-
ate variables YTL, YTR, YBL, YBR can be treated as the same
type. They all share a value space, as do the neural represen-
tations QTL,QTR,QBL,QBR. This means we can perform
interchange interventions between different variables and
extend our training objective to these interventions as well:

T-INTINV(M,b, s,V,V′)
def
=

GETVALS(MV′←GETVALS(M,s,V),b,VOut) (6)∑
w,w′∈{TL, TR, BL, BR}
b,s∈PVR-MNIST

CE
(

T-INTINV(CPVR,b, s, Yw, Yw′),

T-INTINV(N θ
PVR,b, s,Qw,Qw′)

)
(7)

Multi-Task Objectives To compare against multi-task ob-
jectives, we train models to predict the value of intermediate
variables from the aligned neural representations, backprop-
agating into the weights of the target model. Specifically,
we train four linear classifiers Pϕw on the loss∑

input∈PVR-MNIST
w∈{TL,TR,BL,BR}

CE(Pϕw(GETVALS(N θ
PVR, input,Qw)),

GETVALS(CPVR, input, w)) (8)

where the trained parameters are θ the parameters of ResNet
and ϕw the parameters of the linear classifiers.

Training Regime Behavioral
Accuracy

Interchange
Intervention

Accuracy
Train Test Train Test

STANDARD 99.10 0.00 88.80 20.60
IIT 99.60 93.93 99.00 94.85
MULTI 99.64 0.00 89.35 20.50
IIT + MULTI 99.60 96.01 99.10 96.64

AUGMENT 99.40 90.90 98.90 92.00
TYPING ABLATION 99.41 0.09 99.47 16.88

Table 1. Results forN θ
PVR (ResNet18) trained on the PVR-MNIST

dataset. Behavioral accuracy is the percentage of inputs thatN θ
PVR

agrees with CPVR on. Interchange intervention accuracy quantifies
the extent to which the interpretable causal model is a proxy for
the network (section 3). IIT delivers the best results, especially
when combined with multi-task objectives.

Data Augmentation We perform data augmentation by
randomly sampling two examples and swapping a random
quadrant of the base input with a random quadrant of the
source input to produce a new example that is then labeled
with CPVR. This procedure is guided by the same causal
structure used by our other models, but it is by definition
restricted to input manipulations.

Results Our results are shown in Table 1. The standard
accuracy captures whether we have achieved our behavioral
objective and the interchange intervention accuracy captures
whether the symbolic causal model is an abstraction of the
neural network.

Neither the standard nor multi-task models learned the be-
havioral objective in a way that generalizes, with total failure
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on the testing data (0%). On the other hand, IIT solves the
generalization task (93.93%). However, multi-task training
does synergize with IIT, producing the model with the best
performance (96.01%). Data augmentation lessens the dis-
tributional shift; however, the distributions remain skewed
and model performance is stuck at 90.90%.

Our interchange intervention test set accuracies tell a similar
story. Neither the standard nor multi-task models learned
the IIT objective in a way that generalizes, with total failure
on the testing data (20.60% and 20.50%, respectively). On
the other hand, IIT learns a general solution to the inter-
change intervention objectives, achieving accuracy on the
test data (94.85%). Again, multi-task training synergizes
with IIT, producing the model with the best performance
on the IIT objective (96.64%). The causal model CPVR is
a near perfect abstraction of our best model, meaning the
seemingly opaque and complex network dynamics have an
interpretable and faithful abstract structure given by CPVR.

We can see that Resnet has an inherently modular architec-
ture from the fact that standard training produces a model
with quite high (88.80%) interchange intervention accuracy
on the training data. However, without any structural train-
ing objectives, ResNet does not generalize this modular
solution to test data (20.60%). We believe this modularity is
the result of convolutions being operations that preserve lo-
cality of information across layers. When the distributional
shift between training and testing is lessened by data aug-
mentation, the ResNet model produces a model with near
perfect (98.90%) interchange intervention accuracy on the
training data, which generalizes better to test data (92.00%)
(but is still out performed by IIT).

When we ablate our typed interchange intervention ob-
jectives, behavioral and interchange intervention accuracy
plummets on the test data. Typing our variables is crucial
for generalization.

5. Grounded Navigation and Language
Reasoning (ReaSCAN)

Our second benchmark is ReaSCAN (Wu et al., 2021), a
synthetic command-based navigation task that builds off
the SCAN (Lake & Baroni, 2018) and gSCAN (Ruis et al.,
2020) benchmarks. The goal is to predict an action sequence
for the agent to reach the referred target and operate on it
given a command and a grid world. For simplicity, we
experiment with the simplest command structure included
in ReaSCAN, which excludes any relative clauses.3

3Complex command structures may be accompanied by a dif-
ferent symbolic causal structure, which is not the focus of this
paper, and is left for future research.
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Figure 3. A schematic of the causal model that solves ReaSCAN
(bottom) and the neural CNN-LSTM model trained on ReaSCAN
(top). Dashed lines align variables in the causal model with neural
representations in the CNN-LSTM.

Symbolic Causal Structure Our causal model
CReaSCAN = (V,PA,Val, F ) (see figure 3 bottom) is
an oracle solver for ReaSCAN that (1) parses the language
command, identifying size, color, and shape properties
of the target shape, (2) computes the location of the
target object from these properties and the grid world, (3)
calculates the horizontal and vertical distances from the
agent to the target, and, finally, (4) emits an action sequence
that brings the agent to the target. Formally, we define
variables and values

V = {ICom,IWorld, TSize, TColor, TShape,Pt,Pa,Px∆,P
y
∆, O}

Val(TShape) = {circle, square, cylinder}
Val(TColor) = {red, green, blue, yellow}
Val(TSize) = {small, big}
Val(Pt) = Val(Pa) = Val(P∆) = {−5, . . . , 5}

with the values Val(ICom), Val(Iworld), and Val(O) being
equal to the command space, world space, and action se-
quence space. The parents are defined according to the
topology of directed arrows pointing from parents to chil-
dren in figure 3.

The structured equations for object properties, FTSize(iCom),
FTColor(iCom), and FTShape(iCom), are determined by
parsing and interpreting the input language com-
mand. The structured equations for position look-ups
FPt(tSize, tColor, tShape, iWorld) and FPa(iWorld) determine the
target object and agent location from the target object prop-
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Training Regime Behavioral Exact Match %

Novel color Novel size Novel direction Novel length

STANDARD 55.98 (6.31) 41.67 (6.24) 0.00 (0.00) 5.72 (3.44)
MULTI 76.91 (5.02) 39.46 (7.68) 0.00 (0.00) 9.05 (5.28)
IIT 74.12 (6.00) 65.65 (4.26) 0.26 (0.14) 10.20 (6.08)
IIT+ MULTI 80.37 (0.88) 74.84 (0.04) 14.72 (3.54) 25.82 (0.37)

Interchange Intervention Accuracy (Exact Match %)

STANDARD 44.26 (2.76) 35.57 (2.64) 0.00 (0.00) 0.30 (0.21)
MULTI 68.42 (0.20) 45.83 (2.45) 0.00 (0.00) 0.19 (0.05)
IIT 70.63 (9.33) 65.18 (2.84) 5.24 (3.07) 4.75 (2.06)
IIT+ MULTI 70.73 (6.86) 75.34 (0.91) 11.79 (2.57) 8.49 (1.53)

Table 2. Results for the CNN-LSTM on the ReaSCAN systematic generalization tasks. Only models that use IIT are able to consistently
get traction on these tasks, and once again we see that IIT combines effectively with multi-task objectives, in both standard behavioral
evaluations and evaluations that seek to quantify the extent to which the high-level causal model serves as an interpretable proxy for the
network.

erties and the input world. The position deltas FPx
∆

(Pt,Pa)
and FPy

∆
(Pt,Pa) are determined to be the horizontal and

vertical distance between the target object and agent, re-
spectively. Finally, the structured equations for the output
FO(Px∆,P

y
∆) is the action sequence that takes the agent to

the target object, as determined by the vertical and horizon-
tal distances between the two. We visualize this model in
figure 3 (bottom).

Systematic Generalization ReaSCAN includes testing
examples that are systematically different from training ex-
amples. Performance on those test sets provides insights into
a model’s capabilities to generalize to unseen composites
of seen concepts in a zero-shot fashion. In this experiment,
we generate four unseen testing splits investigating two dis-
tinct generalization patterns by adapting ReaSCAN’s data
generation framework.4 We investigate two splits focusing
on novel attribute compositions in input commands (Novel
color and Novel size), and two splits focusing on novel
compositions in output action sequences (Novel direction
and Novel length). See Appendix B for details about these
splits.

Neural Network We use the original baseline models for
ReaSCAN (Wu et al., 2021) as our neural modelN θ

CNN-LSTM.
N θ

CNN-LSTM is a multimodal sequence-to-sequence model
which takes in a command and a grid world, and predicts
an action sequence as shown in figure 3. We include details
about the model and experimental set-up in Appendix B.

Alignments In our experiments, we align neural represen-
tations of N θ

CNN-LSTM with the variables TSize, TColor, TShape

4To better facilitate our evaluation pipeline, we regenerate spe-
cialized datasets using ReaSCAN’s data generation framework.
Details about the datasets can be found in Appendix B.

and P∆, in CReaSCAN. We choose the neural representation
eShape output by the LSTM encoder above the noun token
(e.g., “circle”), which has 75 dimensions, to be evenly parti-
tioned into three chunks of 25 dimensions, which are aligned
with the target properties TSize, TColor, and TShape. The recur-
rent nature of the LSTM model may encode target properties
by the hidden representation of the TShape property, which
is at the last word in a target expression. For the position
deltas, we choose the initial hidden representation h1 of
the decoder LSTM, which has 100 dimensions, to be sliced
into two evenly partitioned 50 dimension chunks where the
first chunk represents the position difference by row Py∆,
and the second chunk represents the position difference by
column Px∆. We hypothesize that h1 encodes information
about the target position with respect to the agent position
derived from the shape world and the command, and our
action emitter generated output sequence accordingly.

Interchange intervention training For each possible
aligned pair of variables and neurons in CReaSCAN and
N θ

CNN-LSTM (i.e., CW , NW , where CW ∈ {TSize, TColor,
TShape,Px∆,P

y
∆}, and NW ∈ {eShape,h1} where i is the in-

dex of the token for the shape descriptor), we introduce an
IIT objective that optimizes for N θ

CNN-LSTM implementing
the submodel of CReaSCAN:

∑
b,s∈REASCAN

CEAction

(
INTINV(N θ

CNN-LSTM,b, s,NW ),

INTINV(CReaSCAN,b, s, CW )
)

(9)

where CEAction is the cross-entropy loss over each action
token prediction over the complete action sequence.

Multi-task Objectives Similar to MNIST-PVR, we train
small models to predict the position offsets between the
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target and the agent from the aligned neural representations.
Specifically, for all W ∈ {TSize, TColor, TShape,Px∆,P

y
∆}, we

train a single-layer linear classifier PϕW on the loss

∑
i∈ReaSCAN

CEPosition

(
PϕW (GETVALS(N θ+i

CNN-LSTM, i,P∆)

GETVALS(CReaSCAN, i, h1)
)

(10)

where the trained parameters are θ, the parameters of the
CNN-LSTM, and ϕW , the parameters of the linear classi-
fiers.

Results Our results are shown in Table 2. We use exact
matches of action sequences as our evaluation metric for the
behavioral and interchange intervention tasks.

We begin with our results on the behavioral task. Standard
training produces models that fail to generalize across all
four tasks. IIT alone out-performs multi-task training on
novel sizes and lengths, and performs similarly on novel
colors and lengths. Again, we observe that IIT and multi-
task synergize, producing the models that best generalize
across all tasks. Overall, IIT is essential to achieving state-
of-the-art results on this systematic generalization task.

Our interchange intervention accuracy results suggest that
IIT delivers models that best conform to the interpretable
causal model. Without any IIT objectives, both the standard
and multi-task models achieve non-zero interchange inter-
vention accuracy for only the two easier splits: novel colors
and novel size. IIT achieves significant improvements over
these two tasks and gets traction on the two more difficult
ones, novel direction and novel length. And, once again,
combining IIT with multi-task training delivers the best
model by wide margins on all four tasks.

6. Conclusion
We introduced interchange intervention training as a method
to imbue neural networks with interpretable, systematic
causal structure, and we conducted two quite different case
studies with IIT: a vision task (MNIST-PVR) and a grounded
language understanding task (ReaSCAN). In both settings,
models trained with IIT perform best in standard (but very
challenging) behavioral evaluations and prove to be the most
interpretable in the sense that they conform best to our high-
level causal models of the tasks. In addition, our results
show that IIT is easily combined with multi-task objectives
that further strengthen the results. These initial findings
suggest that IIT is a flexible and powerful way to bring
high-level insights about causal structure into a data-driven
learning process.
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A. Minimized Loss Entails Causal
Abstraction

Claim Suppose we have a loss function LOSS that outputs
a non-negative value. If LOSS(x, y) = 0⇒ x = κ(y), then
the interchange intervention loss being zero guarantees that
then causal model C is a causal abstraction of the neural
network N θ.

Proof Suppose that∑
b,s∈VIn

LOSS
(

INTINV(C,b, s, V ),

INTINV(N θ,b, s,Π(V ))
)

= 0 (11)

Because our loss function outputs non-negative numbers,
we know that, if the sum Eqn. 4 is 0, then each addend in
the sum is 0:

∀ b, s ∈ VIn : LOSS
(

INTINV(C,b, s, V ),

INTINV(N θ,b, s,Π(V ))
)

= 0 (12)

Because our loss function is such that LOSS(x, y) = 0 ⇒
x = κ(y), we conclude:

∀ b, s ∈ VIn : INTINV(C,b, s, V ) =

κ(INTINV(N θ,b, s,Π(V ))) (13)

This is exactly the condition for abstraction in Eqn. 2.

B. ReaSCAN
Dataset Generation Table 3 shows dataset statistics. For
the novel color and novel size splits, we only train a single
model which uses the same training set, but test on different
testing sets, as discussed in section 5. For the novel color,
novel size and novel length splits, we use the ReaSCAN

Split #Train #Dev #Test #Zero-shot

A1: novel color 76,102 3,816 3,774 7,195
A2: novel size 76,102 3,816 3,774 7,227
B1: novel direction 34,343 1,201 357 8,282
B2: novel length 52,662 4,250 4,250 1,338

Table 3. Statistics of all splits in our ReaSCAN dataset.

framework5 to generate Simple commands without any rel-
ative clause as discussed in its original paper (Wu et al.,
2021). For the novel color and novel size splits, we have
allowed verbs = {“walk to”, “push”, “pull”}, and allowed
adverbs = {“while zigzagging”, “while spinning”, “cau-
tiously”, “hesitantly”}. For the novel direction and novel
length splits, we have allowed verbs = {“walk to”}, and
we disallow adverbs, as we are focusing on action length
generalization, not command generalization.

Our split B1 is derived from gSCAN with its novel direction
testing split (Ruis et al., 2020), as the ReaSCAN framework
cannot partition splits by relative agent-to-target direction.
We set 200 grid worlds per command for the novel color and
novel size splits, and we set 1200 grid worlds per command
for the novel length split, as the allowed command pattern is
much smaller for this split, since we exclude all other verbs
except “walk to”.

The ReaSCAN dataset generation procedure leads to some
artifacts, which are discussed in its original paper in detail.
These are not especially relevant for our experiments.

The data generation process takes approximately 30 min-
utes on a multi-CPU cluster. Although we generate our
own datasets from an existing data generation engine, our
training paradigm can be extended to solve existing datasets.

Experiment Set-up For our CNN-LSTM, we adapt code
from the original repository.6 For all training objectives, we
optimize for cross-entropy loss using Adam with default
parameters (Kingma & Ba, 2015). The learning rate starts
at 1e−4 and decays by 0.9 every 20,000 steps. We train
the model for a fixed number of epochs (100,000) before
stopping. The best model is picked by performance on a
smaller development set of 2,000 examples, which is consis-
tent with the training pipeline proposed in Ruis et al. (2020)
for gSCAN. The training time is about 1 day on a Standard
GeForce RTX 2080 Ti GPU with 11GB memory. To foster
reproducibility, we release our adapted evaluation scripts in
our code repository. We repeat each experiment with three
distinct random seeds to ensure a fair comparison.

5The implementation is adapted from ReaSCAN’s public code
repository: https://github.com/frankaging/Reason-SCAN.

6https://github.com/LauraRuis/multimodal seq2seq
gSCAN

https://arxiv.org/abs/2107.12580
https://arxiv.org/abs/2107.12580
http://arxiv.org/abs/1707.08114
http://arxiv.org/abs/1707.08114
https://github.com/frankaging/Reason-SCAN
https://github.com/LauraRuis/multimodal_seq2seq_gSCAN
https://github.com/LauraRuis/multimodal_seq2seq_gSCAN
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Training Procedure We release implementations for our
neural models with our symbolic causal structures in our
code repository. Our released symbolic causal structures
for solving ReaSCAN is not unique, and may not be the
optimal one for improving generalizability. Additionally,
our variable mappings between two models are not unique.
Ideally, a chosen casual variable can be mapped into any
hidden states in the neural model. However, we find that
the specific mapping chosen substantially affects model
performance and generalizability.

In contrast to a standard training pipeline, which takes in a
single input, our IIT takes pairs of examples as inputs. We
found that the formulation of the pairs affects performance.
We leave this for future research into the effects of example
pairing on model performance.

Generalization Splits To evaluate the generalization
power of models, ReaSCAN includes testing examples that
are systematically different from training examples. Specifi-
cally, ReaSCAN generates unseen testing patterns to assess
whether models can generalize to unseen composites of seen
concepts in a zero-shot setting. We now describe each split
in detail.

Novel Color Attribute (Novel color) allows models to see
“yellow circle” (6,127 examples) and “red square” (6,111
examples) during training but never allows any commands
containing “yellow square” during training, and evaluates
models with commands containing “yellow square” during
test time.

Novel Size Attribute (Novel size) holds out all commands
referring to small cylinders in any color, meaning that mod-
els have not seen commands containing phrases such as
“small cylinder” or “small yellow cylinder” during training.
On the other hand, models have seen commands containing
“big cylinder” (2,020 examples) or “small square” (2,093
examples). At test time, models need to generalize to the
hold-out examples.

Novel Direction (Novel direction) holds out any command
and grid world pair where the referred target is initially
located at the south west (SW) of the agent. At test time,
models need to generate action sequence to reach to the
target which is located SW of the agent. As our agent is
always facing to the right (i.e., east) in the beginning, models
need to generate action sequences containing three “turn
left” actions in order to reach any target positioning at SW
of the agent.

Novel Action Sequence Length (Novel length) holds out
any command and grid world pair that requires models to
predict action sequence that contains more than 10 actions.
At test time, models need to generalize to examples that
require 11, 12, or 13 actions to reach at the target.

CNN-LSTM The encoder contains two parts, a convolu-
tional network (CNN) (Fukushima & Miyake, 1982) for en-
coding the grid world and a bi-directional LSTM (Schuster
& Paliwal, 1997; Hudson & Manning, 2018) for encoding
the command. The decoder is a LSTM with cross-modalitiy
attention weights over the command and the grid world.
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“push the small green 
cylinder hesitantly”

'turn left', 'turn left', 
'walk', 'stay', 'walk', 
'stay', 'walk', 'stay'

“pull to the red cylinder 
while zigzagging”

'walk', 'turn left', 'walk', 
'turn right', 'walk', 'turn 

left', 'walk', 'walk', 
'pull', 'pull'

“walk the cylinder”

'turn left', 'turn left', 
'walk'

Figure 4. ReaSCAN examples with varying command patterns. The navigation commands and the target action sequences are in the grey
boxes and green boxes respectively.


