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Abstract

There is growing evidence that pretrained
language models improve task-specific fine-
tuning not just for the languages seen in pre-
training, but also for new languages and even
non-linguistic data. What is the nature of this
surprising cross-domain transfer? We offer a
partial answer via a systematic exploration of
how much transfer occurs when models are
denied any information about word identity
via random scrambling. In four classification
tasks and two sequence labeling tasks, we eval-
uate baseline models, LSTMs using GloVe em-
beddings, and BERT. We find that only BERT
shows high rates of transfer into our scram-
bled domains, and for classification but not se-
quence labeling tasks. Our analyses seek to ex-
plain why transfer succeeds for some tasks but
not others, to isolate the separate contributions
of pretraining versus fine-tuning, and to quan-
tify the role of word frequency. These find-
ings help explain where and why cross-domain
transfer occurs, which can guide future studies
and practical fine-tuning efforts.1

1 Introduction

Fine-tuning pretrained language models has proven
to be highly effective across a wide range of NLP
tasks; the leaderboards for standard benchmarks
are currently dominated by models that adopt this
general strategy (Rajpurkar et al., 2016, 2018;
Wang et al., 2018; Yang et al., 2018; Wang et al.,
2019). Recent work has extended these findings in
even more surprising ways: Artetxe et al. (2020),
Karthikeyan et al. (2019), and Tran (2020) find evi-
dence of transfer between natural languages, and
Papadimitriou and Jurafsky (2020) show that pre-
training language models on non-linguistic data
such as music and computer code can improve test
performance on natural language.

1We release code to scramble corpora and run our evalua-
tion pipeline at https://github.com/frankaging/
limits-cross-domain-transfer

Figure 1: An overview of our experiment paradigm.
Starting with a model (e.g., pretrained BERT, GloVe-
initialized LSTM, etc.), we copy it and fine-tune it on
the regular and scrambled train set using a scrambling
function F. The model is then evaluated on regular and
scrambled test sets. Our paper explores different op-
tions for F and a number of variants of our models to
try to quantity the amount of transfer and identify its
sources.

Why does pretraining help even across what ap-
pear to be fundamentally different symbolic do-
mains, and what are the limits of such cross-domain
transfer? In this work, we seek to inform these
questions via a systematic exploration of how much
cross-domain transfer we see when the model is
denied any information about word identity.

Figure 1 gives an overview of our core experi-
mental paradigm: starting with two identical copies
of a single pretrained model for English, we fine-
tune one on English examples and the other on
scrambled English sentences, using a scrambling
function F (Section 3), and then we evaluate the re-
sulting models. We apply this paradigm to four
classification tasks and two sequence modeling
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tasks, and we evaluate bag-of-words baselines,
LSTMs with GloVe initialization and rich atten-
tion mechanisms, and BERT. Our central finding
is that only BERT is able to achieve robust cross-
domain transfer, and for classification tasks but not
sequence labeling ones.

To try to understand why such transfer is suc-
cessful for some tasks but not others, we pursue a
number of hypotheses. First, we consider whether
using a scrambling function F that matches word
frequencies is required for transfer, and we find
that such matching plays a small role, but not
enough to account for the observed performance
(Section 7.1). Second, we assess whether frequency
matching might actually be inserting semantic con-
sistency into the scrambling process by, for ex-
ample, systematically creating substitution pairs
like good/great and professor/teacher (Section 7.2).
However, we find no evidence of such semantic
consistency. Third, we try to isolate the contribu-
tion of pretraining versus fine-tuning by fine-tuning
randomly initialized models of different sizes (Sec-
tion 7.3) and by freezing the BERT parameters,
such that only task-specific parameters are updated
(Section 7.4). These variations lead to a substantial
drop in transfer, suggesting that fine-tuning is vital,
although our LSTM results show that the BERT
pretrained starting point is also an essential compo-
nent. While these findings do not fully account for
the transfer we observe, they offer a partial explana-
tion which should help guide future studies of this
issue and which can help with practical fine-tuning
work in general.

2 Related work

2.1 Evidence for Transfer

Transferability across domains is often used
to benchmark large pretrained models such as
BERT (Devlin et al., 2019a), RoBERTa (Liu et al.,
2019b), ELECTRA (Clark et al., 2019), and XL-
Net (Yang et al., 2019). To assess transferability,
pretrained models are fine-tuned for diverse down-
stream tasks (Wang et al., 2018, 2019). Recently,
pretrained Transformer-based models (Vaswani
et al., 2017) have even surpassed estimates of hu-
man performance on GLUE (Wang et al., 2018)
and SuperGLUE (Wang et al., 2019). While the
benefits of pretraining are reduced when there is
a large train set (Hernandez et al., 2021), there is
little doubt that this pretraining process helps in
many scenarios.

2.2 Studies of Why Transfer Happens

There are diverse efforts underway to more deeply
understand why transfer occurs. Probing tests of-
ten involve fitting supervised models on internal
representations in an effort to determine what they
encode. Such work suggests that BERT represen-
tations encode non-trivial information about mor-
phosyntax and semantics (Tenney et al., 2019; Liu
et al., 2019a; Hewitt and Manning, 2019; Manning
et al., 2020) and perhaps weakly encode world
knowledge such as relations between entities (Da
and Kasai, 2019; Petroni et al., 2019), but that they
contain relatively little about pragmatics or role-
based event knowledge (Ettinger, 2020). Newer
feature attribution methods (Zeiler and Fergus,
2014; Springenberg et al., 2015; Shrikumar et al.,
2017; Binder et al., 2016; Sundararajan et al., 2017)
and intervention methods (McCoy et al., 2019; Vig
et al., 2020; Geiger et al., 2020) are corroborating
these findings while also yielding a picture of the
internal causal dynamics of these models.

Another set of strategies for understanding trans-
fer involves modifying network inputs or internal
representations and studying the effects of such
changes on task performance. For instance, Tamkin
et al. (2020) show that BERT’s performance on
downstream GLUE tasks suffers only marginally
even if some layers are reinitialized before fine-
tuning, and Gauthier and Levy (2019), Pham et al.
(2020), and Sinha et al. (2021) show that BERT-
like models are largely insensitive to word order
changes.

2.3 Extreme Cross-Domain Transfer

Cross-domain transfer is not limited to monolin-
gual cases (Karthikeyan et al., 2019). With modifi-
cations to its tokenizer, English-pretrained BERT
improves performance on downstream multilingual
NLU tasks (Artetxe et al., 2020; Tran, 2020). Pa-
padimitriou and Jurafsky (2020) show that pretrain-
ing language models on structured non-linguistic
data (e.g., MIDI music or Java code) improves test
performance on natural language. Our work ad-
vances these efforts along two dimensions. First,
we challenge models with extremely ambitious
cross-domain settings and find that BERT shows
a high degree of transfer, and we conduct a large
set of follow-up experiments to help identify the
sources and limitations of such transfer.



Scrambling Method Sentence

Original English
(No Scrambling)

“the worst titles in recent cine-
matic history”

Similar Frequency “a engaging semi is everyone
dull dark”

Random “kitsch theatrically tranquil
andys loaf shorty lauper”

Table 1: An example from the SST-3 dataset and its two
scrambled variants.

3 Experimental Paradigm

We now describe the evaluation paradigm summa-
rized in Figure 1 (Section 3.1), with special atten-
tion to the scrambling functions F that we consider
(Sections 3.2–3.3).

3.1 Evaluation Pipeline
Figure 1 shows our main evaluation paradigm for
testing the transferability of a model without word
identity information. On the left side, we show the
classic fine-tuning pipeline (i.e., we fine-tune on
the original English training set and evaluate on
the original English test set). On the right side, we
show our new evaluation pipeline: starting from a
single model, we (1) fine-tune it with a corrupted
training split where regular English word identities
are removed and then (2) evaluate the model on
a version of the evaluation set that is corrupted in
the same manner. The paradigm applies equally to
models without any pretraining and with varying
degrees of pretraining for their model parameters.

3.2 Scrambling with Similar Frequency
To remove word identities, we scrambled each sen-
tence in each dataset by substituting each word w
with a new word w′ in the vocabulary of the dataset.
For Scrambling with Similar Frequency, we use the
following rules:

1. w and w′ must have the same sub-token length
according to the BERT tokenizer; and

2. w and w′ must have similar frequency.

The first rule is motivated by the concern that sub-
token length may correlate with word frequency,
given that rarer and longer words may be tokenized
into longer sub-tokens. The second rule is the
core of the procedure. The guiding idea is that
word frequency is often reflected in learned em-
beddings (Gong et al., 2018), so this scrambling

procedure might preserve useful information and
thus help to identify the source of transfer. Table 5
shows an example, and Appendix C provides de-
tails about the matching algorithm and additional
examples of scrambled sentences.

3.3 Random Scrambling

To better understand the role of frequency in do-
main transfer, we also consider a word scrambling
method that does not seek to match word frequen-
cies. For this, we simply shuffle the vocabulary and
match each word with another random word in the
vocabulary without replacement. We include the
distributions of the difference in frequency for ev-
ery matched word pair in Appendix C to make sure
a word is paired with a new word with drastically
different frequency in the dataset. We also tried
to pair words by the reverse order of frequencies,
which yielded similar results, so we report only
random scrambling results here.

4 Models

In this section, we describe the models we evalu-
ated within our paradigm. Appendix B provides
additional details about how the models were de-
signed.

BERT For our BERT model (Devlin et al.,
2019b), we import weights from the pretrained
BERT-base model through the HuggingFace
Transformers library (Wolf et al., 2020). For
sequence classification tasks, we append a classi-
fication head after the [CLS] token embedding
in the last layer of the BERT model. If an input
example contains a pair of sentences, we concate-
nate them using a [SEP] token in between. For
sequence labeling tasks, we append a shared classi-
fication head to each token embedding in the last
layer of the BERT model.

LSTM We contextualize our results against
a strong LSTM-based model (Hochreiter and
Schmidhuber, 1997). We lower-case each input
sentence and tokenize it by separating on spaces
and punctuation. We then use 300-dimensional
GloVe embeddings (Pennington et al., 2014)2 as in-
puts to a single-layer recurrent neural network with
LSTM cells, with a hidden size of 64. We use dot-
product attention (Luong et al., 2015) to formulate

2We use the Common Crawl cased version:
http://nlp.stanford.edu/data/glove.840B.
300d.zip
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Dataset Type #Train #Dev #Test #Class

SST-3 Sequence Classification 159k 1,1k 2.2k 3
SNLI Sequence Classification 550k 10k 10k 3
QNLI Sequence Classification 108k 5.7k 5.7k 2
MRPC Sequence Classification 3.7k 408 1.7k 2
EN-EWT UPOS Sequence Labeling 14k 2k 3.5k 18
CoNLL-2003 NER Sequence Labeling 12.5k 2k 2.1k 9

Table 2: Summary information for each task.

a context vector for each sentence. Finally, we pass
the context vector through a multilayer perceptron
(MLP) layer to get the final prediction. For an input
example with a pair of sentences, we concatenate
two sentences together before feeding them into
our LSTM encoder. For sequence labeling tasks,
we directly feed the hidden state at each position
to the MLP layer to get the final prediction.

Bag-of-Words (BoW) Model We compare
against a BoW classifier, which serves as a proxy
of model performance when only given word
co-occurrence information. For each sentence in
a dataset, we first formulate a BoW vector that
uses unigram representations of an input sentence.
Then, we feed the BoW vector through a softmax
classifier. For examples with a pair of sentences,
we create two BoW vectors for each sentence,
and concatenate them together before feeding
them into the linear layer for predicting labels.
For sequence labeling tasks, we use Conditional
Random Fields models (CRFs; Lafferty et al.,
2001) with character-level unigram BoW features.

Dummy Model We include a random classifier
that generates predictions randomly proportional
to the class distribution of the training set. We use
this model to further contextualize our results.

5 Tasks

We consider six sequence classification and se-
quence labeling tasks (Table 2).

Sequence Classification We select four NLU
datasets for sequence classification. We consider
sentiment analysis (SST-3; Socher et al., 2013),
where SST-3 is a variant of the Stanford Senti-
ment Treebank with positive/negative/neutral la-
bels; we train on the phrase- and sentence-level
sequences in the dataset and evaluate only on its
sentence-level labels. Additionally, we include nat-
ural language inference (QNLI; Demszky et al.,

2018 and SNLI; Bowman et al., 2015) and para-
phrase (MRPC; Dolan and Brockett, 2005). QNLI
is derived from a version of Stanford Question An-
swering Dataset. For sequence classification tasks,
we use Macro-F1 scores for SST-3, and accuracy
scores for other NLU tasks.

Sequence Labeling In contrast to sequence clas-
sification, where the classifier only considers the
[CLS] token of the last layer and predicts a single
label for a sentence, sequence labeling requires the
model to classify all tokens using their contextual-
ized representations.

We select two datasets covering distinct tasks:
part-of-speech detection (POS) and named entity
recognition (NER). We used Universal Dependen-
cies English Web Treebank (EN-EWT) (Silveira
et al., 2014) for POS, and CoNLL-2003 (Tjong
Kim Sang and De Meulder, 2003) for NER. For
sequence labeling tasks, we used Micro-F1 (i.e.,
accuracy with full labels) for POS and F1 scores
for NER.

6 Results

In this section, we analyze the fine-tuning perfor-
mance of BERT on scrambled datasets. Table 3
shows performance results. We focus for now
on the results for Scrambling with Similar Fre-
quency. Additionally, we also include baseline
models trained with original sentences for compar-
ison purposes. When training models on each task,
we select models based on performance on the dev
split during fine-tuning. We average performance
results with multiple random seeds to get stabilized
results. See Appendix B for additional details on
our training and evaluation procedures.

6.1 Sequence Classification
Comparing the second column (BERT model that
is trained and tested on English) with the sixth col-
umn (BERT model that is trained and tested on



Dataset
Standard Models (Train and Test on English) Scrambled Models (Train and Test on Scrambled English)

BERT LSTM BoW Dummy
BERT-Scrambled LSTM-Scrambled

Similar Frequency Random Similar Frequency Random

SST-3 .71 (.02) .62 (.01) .59 (.00) .33 (.02) .65 (.01) .64 (.02) .57 (.02) .56 (.02)

SNLI .91 (.02) .78 (.02) 66 (.02) .33 (.01) .84 (.01) .82 (.02) .72 (.00) .71 (.01)

QNLI .91 (.02) .68 (.02) .62 (.01) .50 (.01) .82 (.01) .79 (.02) .62 (.01) .61 (.01)

MRPC .86 (.01) .72 (.02) .70 (.02) .50 (.02) .82 (.02) .78 (.02) .69 (.00) .68 (.00)

EN-EWT .97 (.01) .85 (.02) .65 (.01) .09 (.01) .86 (.01) .81 (.02) .80 (.01) .72 (.01)

CoNLL-2003 .95 (.01) .75 (.01) .28 (.02) .02 (.01) .74 (.01) .72 (.02) .61 (.02) .56 (.01)

Table 3: Model performance results for models trained on original English and on scrambled English. Standard
deviations are reported for all entries.

Scrambled English with Similar Frequency Scram-
bling) in Table 3, we see that BERT maintains
strong performance for all sequence classification
tasks even when the datasets are scrambled. More
importantly, we find that BERT fine-tuned with
a scrambled dataset performs significantly better
than the LSTM model (with GloVe embeddings)
trained and evaluated on standard English data

For example, on the MRPC task, BERT evalu-
ated with scrambled data experiences a less than
5% performance drop, and shows significantly bet-
ter performance (a 13.9% improvement) than the
best LSTM model. BERT evaluated with scram-
bled QNLI experiences the biggest drop (a 9.89%
decrease). However, this still surpasses the best
LSTM performance by a large margin (a 20.6%
improvement).

Table 3 also presents performance results for
other baseline models, which can be used to assess
the intrinsic difficulty of each task. Our results sug-
gest that BERT models fine-tuned with scrambled
tasks remain very strong across the board, and they
remain stronger than best LSTM baseline models
(i.e., trained and tested on regular English) in all
the classification tasks.

The overall performance of the LSTM models
is worth further attention. The LSTMs are far
less successful at our tasks than the BERT mod-
els. However, it seems noteworthy that scrambling
does not lead to catastrophic failure for these mod-
els. Rather, they maintain approximately the same
performance in the scrambled and unscrambled
conditions. This might seem at first like evidence
of some degree of transfer. However, as we discuss
in Section 7.3, the more likely explanation is that
the LSTM is simply being retrained more or less
from scratch in the two conditions.

Dataset LSTM-Baseline
LSTM-Scrambled
Similar Frequency
GloVe No GloVe

SST-3 .62 (.01) .57 (.02) .58 (.01)

SNLI .78 (.02) .72 (.00) .71 (.00)

QNLI .68 (.02) .62 (.01) .61 (.01)

MRPC .72 (.02) .69 (.00) .69 (.00)

EN-EWT .85 (.02) .80 (.01) .79 (.01)

CoNLL-2003 .75 (.01) .61 (.02) .60 (.01)

Table 4: Performance results for LSTM models trained
on regular English and on English with Scrambling
with Similar Frequency, with GloVe embeddings and
with randomly initialized embeddings.

6.2 Sequence Labeling

For a more complex setting, we fine-tuned BERT
with sequence labeling tasks, and evaluated its
transferability without word identities (i.e., using
datasets that are scrambled in the same way as in
our sequence classification tasks). The second set
(bottom set) of Table 3 shows performance results
for sequence labeling tasks where the goal of the
BERT model is to classify every token correctly.
As shown in Table 3, BERT experiences a signifi-
cant drop when evaluated with a scrambled dataset
for a sequence labeling task. For LSTMs trained
with scrambled sequence labeling tasks, we also
observe bigger drops compared with sequence clas-
sification tasks. For CoNLL-2003, LSTM with
GloVe embeddings drops (a 18.7% decrease) from
its baseline counterpart. Our results suggest that
transfer learning without word identities is much
harder for sequence labeling tasks. One intuition is
that sequence labeling tasks are more likely to rely
on word identities given the fact that classification
(i.e., labeling) is at the token-level.



Figure 2: Zero-shot evaluation with the Bag-of-Word
(BoW) model on scrambled datasets and the dummy
model. Numbers are the differences between the cur-
rent points and the first points in percentages.

7 Analysis

7.1 Frequency Effects

Preserving word frequencies during scrambling
may lead to higher performance when training and
evaluating on scrambled datasets. To assess how
much of the observed transfer relates to this fac-
tor, we can compare Scrambling with Similar Fre-
quency (SSF) with Random Scrambling (RS), as
described in Section 3. As shown in Table 3, per-
formance drops slightly if we use RS. For sequence
classification tasks, RS experiences 1–5% drops in
performance compared with SSF. For sequence la-
beling tasks, the difference is slightly larger: about
2–6%. This suggests that word frequency is indeed
one of the factors that affects transferability, though
the differences are relatively small, indicating that
this is not the only contributing factor. This is con-
sistent with similar findings due to Karthikeyan
et al. 2019 for multilingual BERT.

7.2 Does Scrambling Preserve Meaning?

Another explanation is that our scrambling meth-
ods tend to swap words that are predictive of the
same labels. For example, when we are substitut-
ing words with similar frequencies in SST-3, “good”
may be swapped with “great” since they may have
similar frequencies in a sentiment analysis dataset.
To rule this out, we conducted zero-shot evalua-
tion experiments with our BoW model on sequence
classification tasks. The rationale here is that, to
the extent that our swapping preserved the underly-
ing connection between features and class labels,
this should show up directly in the performance
of the BoW model. For example, just swapping
of “good” for “great” would hardly affect the fi-
nal scores for each class. If there are a great many
such invariances, then it would explain the apparent

transfer.
Figure 2 shows the zero-shot evaluation results

of our BoW model on all sequence classification
datasets. Our results suggest that both scrambling
methods result in significant performance drops,
which suggests that word identities are indeed de-
stroyed by our procedure, which again shines the
spotlight on BERT as the only model in our exper-
iments to find and take advantage of transferable
information.

7.3 Transfer or Simple Retraining?

Our results on classification tasks show that
English-pretrained BERT can achieve high perfor-
mance when fine-tuned and evaluated on scrambled
data. Is this high performance uniquely enabled by
transfer from BERT’s pretrained representations,
or is BERT simply re-learning the token identities
from its scrambled fine-tuning data?

To distinguish between these two hypotheses, we
first examine whether randomly-initialized BERT
models can also achieve high performance when
fine-tuned and evaluated on scrambled data. We
study models of varying capacity by modulating
the number of BERT Transformer layers. See Ap-
pendix B for details about the training procedure
for these randomly-initialized models.

We compare these varying-depth randomly-
initialized models against BERT models pretrained
on English. To modulate the capacity of these pre-
trained models, we progressively discard the later
Transformer layers (i.e., we make predictions from
intermediate layers). Comparing these models is a
step toward disentangling the performance gains of
pretraining from the performance gains relating to
model capacity.

Figure 3 summarizes these experiments. The red
line represents our fine-tuning results, across dif-
ferent model sizes. The shaded area represents the
performance gain from pretraining when training
and testing on scrambled data. Pretraining yields
consistent gains across models of differing depths,
with deeper models seeing greater gains.

For sequence labeling tasks, the patterns are dras-
tically different: the areas between the two lines
are small. Since the random-initialized and pre-
trained models achieve similar performance when
fine-tuned and tested on scrambled data, pretrain-
ing is not beneficial. This suggests that BERT
hardly transfers knowledge when fine-tuned for
sequence labeling with scrambled data.



Figure 3: Performance results when fine-tuning end-to-end for different number of Transformer layers. Annotated
numbers are the differences between the red lines and the green lines in percentages. Scoring for each task is
defined in Section 5.

Table 4 shows our results when training LSTMs
without any pretrained embeddings. Unlike with
BERT, GloVe initialization (a pretraining step)
hardly impacts model performance across all tasks.
Our leading hypothesis here is that the LSTMs may
actually relearn all weights without taking advan-
tage of pretraining. All of our LSTM models have
parameter sizes around 1M, whereas the smallest
BERT model (i.e., with a single Transformer layer)
is around 3.2M parameters. Larger models may be
able to rely more on pretraining.

Overall, these results show that we do see trans-
fer of knowledge, at least for classification tasks,
but that there is variation between tasks on how
much transfer actually happens.

7.4 Assessing Transfer with Frozen BERT
Parameters

We can further distinguish the contributions of pre-
training versus fine-tuning by freezing the BERT
parameters and seeing what effect this has on cross-
domain transfer. Ethayarajh (2019) provides evi-
dence that early layers are better than later ones for
classifier fine-tuning, so we explore the effects of
this freezing for all the layers in our BERT model.

As shown in Figure 4, performance scores drop
significantly if we only fine-tune the classifier head
and freeze the rest of the layers in BERT across
three of our tasks. However, we find that perfor-
mance scores change significantly depending on
which layer we append the classifier head to. Con-
sistent with Ethayarajh’s findings, contextualized

embeddings in lower layers tend to be more pre-
dictive. For example, if we freeze BERT weights
and use the contextualized embeddings from the
2nd layer for SST-3, the model reaches peak perfor-
mance compared with contextualized embeddings
from other layers. More importantly, the trend of
the green line follows the red line in Figure 4, es-
pecially for SST-3 and QNLI. The only exception
is MRPC, where the red line plateaus but the green
line keeps increasing. This could be an artifact
of the size of the dataset, since MRPC only con-
tains around 3.7K training examples. Our results
suggest that pretrained weights in successive self-
attention layers provide a good initial point for the
fine-tuning process.

8 Conclusion

In this paper, we propose an evaluation pipeline
for pretrained models by testing their transferabil-
ity without word identity information. Specifically,
we take an English pretrained BERT off-the-shelf
and fine-tune it with a scrambled English dataset.
We conduct analyses across six tasks covering both
classification and sequence labeling. By evaluating
performance against multiple baselines, we aim to
assess where BERT can transfer knowledge even
without word identities. We find considerable trans-
fer for BERT as compared to even powerful base-
lines, by only for classification tasks.

What is the source of successful cross-domain
transfer with BERT? We find that word frequency



Figure 4: Performance results when fine-tuning only the classifier head by freezing all proceeding layers in BERT
(red line) vs. fine-tuning end-to-end, which includes the classifier head and all proceeding layers in BERT (green
line). Numbers are scores for the red lines. Scoring for each task is defined in Section 5.

contributes, but only to a limited extent: scrambling
with matched word frequencies consistently outper-
forms scrambling with unmatched word frequen-
cies, but transfer still occurs robustly even with
random scrambling. We are also able to determine
that both pretraining and fine-tuning are important
and interacting factors in this transfer; freezing
BERT weights during task-specific training leads
to much less transfer, but too much task-specific
training erodes the benefits of pretraining and in
turn reduces the amount of transfer observed.

These analyses begin to piece together a full ac-
count of these surprising transfer results for BERT,
but they do not fully explain our experimental re-
sults. Recent literature suggests at least two new
promising avenues to explore. First, Sinha et al.
(2021) seek to help characterize the rich distribu-
tional prior that models like BERT may be learn-
ing, which suggests that higher-order notions of
frequency play a significant role in transfer. Sec-
ond, the findings of Ethayarajh (2019) may be in-
structive: through successful layers, BERT seems
to perform specific kinds of dimensionality reduc-
tion that help with low-dimensional classification
tasks. Our results concerning layer-wise variation
are consistent with this. And there may be other
paths forward. The more we can learn about the
extent of cross-domain transfer, the more effec-
tively we can train and fine-tune these models on
challenging tasks.

Acknowledgements

This work is supported in part a Facebook Robust
Deep Learning for Natural Language Processing
Research Award.

References
Mikel Artetxe, Sebastian Ruder, and Dani Yogatama.

2020. On the cross-lingual transferability of mono-
lingual representations. In Proceedings of the 58th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 4623–4637.

Alexander Binder, Grégoire Montavon, Sebastian
Lapuschkin, Klaus-Robert Müller, and Wojciech
Samek. 2016. Layer-wise relevance propagation for
neural networks with local renormalization layers.
In International Conference on Artificial Neural Net-
works, pages 63–71. Springer.

Samuel Bowman, Gabor Angeli, Christopher Potts, and
Christopher D Manning. 2015. A large annotated
corpus for learning natural language inference. In
Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages
632–642.

Kevin Clark, Minh-Thang Luong, Quoc V Le, and
Christopher D Manning. 2019. ELECTRA: Pre-
training text encoders as discriminators rather than
generators. In International Conference on Learn-
ing Representations.

Jeff Da and Jungo Kasai. 2019. Cracking the contex-
tual commonsense code: Understanding common-
sense reasoning aptitude of deep contextual repre-
sentations. EMNLP 2019, page 1.

Dorottya Demszky, Kelvin Guu, and Percy Liang. 2018.
Transforming question answering datasets into natu-
ral language inference datasets.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019a. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019b. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference

http://arxiv.org/abs/1809.02922
http://arxiv.org/abs/1809.02922
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423


of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

William B Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop
on Paraphrasing (IWP2005).

Kawin Ethayarajh. 2019. How contextual are contextu-
alized word representations? comparing the geome-
try of bert, elmo, and gpt-2 embeddings. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 55–65.

Allyson Ettinger. 2020. What bert is not: Lessons from
a new suite of psycholinguistic diagnostics for lan-
guage models. Transactions of the Association for
Computational Linguistics, 8:34–48.

Jon Gauthier and Roger Levy. 2019. Linking artificial
and human neural representations of language. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 529–
539, Hong Kong, China. Association for Computa-
tional Linguistics.

Atticus Geiger, Kyle Richardson, and Christopher
Potts. 2020. Neural natural language inference mod-
els partially embed theories of lexical entailment and
negation. In Proceedings of the Third BlackboxNLP
Workshop on Analyzing and Interpreting Neural Net-
works for NLP, pages 163–173, Online. Association
for Computational Linguistics.

Chengyue Gong, Di He, Xu Tan, Tao Qin, Liwei Wang,
and Tie-Yan Liu. 2018. Frage: Frequency-agnostic
word representation. In Advances in Neural Infor-
mation Processing Systems, volume 31. Curran As-
sociates, Inc.

Danny Hernandez, Jared Kaplan, Tom Henighan, and
Sam McCandlish. 2021. Scaling laws for transfer.
arXiv preprint arXiv:2102.01293.

John Hewitt and Christopher D Manning. 2019. A
structural probe for finding syntax in word represen-
tations. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4129–4138.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

K Karthikeyan, Zihan Wang, Stephen Mayhew, and
Dan Roth. 2019. Cross-lingual ability of multilin-
gual bert: An empirical study. In International Con-
ference on Learning Representations.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. In Proceedings
of the 3rd International Conference on Learning
Representations.

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional random fields:
Probabilistic models for segmenting and labeling se-
quence data. In Proceedings of the Eighteenth Inter-
national Conference on Machine Learning, ICML
’01, page 282–289, San Francisco, CA, USA. Mor-
gan Kaufmann Publishers Inc.

Nelson F Liu, Matt Gardner, Yonatan Belinkov,
Matthew E Peters, and Noah A Smith. 2019a. Lin-
guistic knowledge and transferability of contextual
representations. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 1073–1094.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019b.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Minh-Thang Luong, Hieu Pham, and Christopher D
Manning. 2015. Effective approaches to attention-
based neural machine translation. In Proceedings of
the 2015 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1412–1421.

Christopher D Manning, Kevin Clark, John Hewitt, Ur-
vashi Khandelwal, and Omer Levy. 2020. Emer-
gent linguistic structure in artificial neural networks
trained by self-supervision. Proceedings of the Na-
tional Academy of Sciences, 117(48):30046–30054.

R. Thomas McCoy, Tal Linzen, Ewan Dunbar, and Paul
Smolensky. 2019. RNNs implicitly implement ten-
sor product representations. In In Proceedings of the
7th International Conference on Learning Represen-
tations, New Orleans, USA.

Isabel Papadimitriou and Dan Jurafsky. 2020. Learn-
ing music helps you read: Using transfer to study
linguistic structure in language models. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
6829–6839.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. GloVe: Global vectors for word rep-
resentation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Process-
ing, pages 1532–1543.

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel,
Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and
Alexander Miller. 2019. Language models as knowl-
edge bases? In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language

https://doi.org/10.18653/v1/D19-1050
https://doi.org/10.18653/v1/D19-1050
https://doi.org/10.18653/v1/2020.blackboxnlp-1.16
https://doi.org/10.18653/v1/2020.blackboxnlp-1.16
https://doi.org/10.18653/v1/2020.blackboxnlp-1.16
https://proceedings.neurips.cc/paper/2018/file/e555ebe0ce426f7f9b2bef0706315e0c-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/e555ebe0ce426f7f9b2bef0706315e0c-Paper.pdf


Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 2463–2473.

Thang M Pham, Trung Bui, Long Mai, and Anh
Nguyen. 2020. Out of order: How important is
the sequential order of words in a sentence in nat-
ural language understanding tasks? arXiv preprint
arXiv:2012.15180.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for SQuAD. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 784–
789, Melbourne, Australia. Association for Compu-
tational Linguistics.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Avanti Shrikumar, Peyton Greenside, and Anshul Kun-
daje. 2017. Learning important features through
propagating activation differences. In Proceedings
of the 34th International Conference on Machine
Learning, volume 70 of Proceedings of Machine
Learning Research, pages 3145–3153, International
Convention Centre, Sydney, Australia. PMLR.

Natalia Silveira, Timothy Dozat, Marie-Catherine
de Marneffe, Samuel Bowman, Miriam Connor,
John Bauer, and Christopher D. Manning. 2014. A
gold standard dependency corpus for English. In
Proceedings of the Ninth International Conference
on Language Resources and Evaluation (LREC-
2014).

Koustuv Sinha, Robin Jia, Dieuwke Hupkes, Joelle
Pineau, Adina Williams, and Douwe Kiela. 2021.
Masked language modeling and the distributional
hypothesis: Order word matters pre-training for lit-
tle. ArXiv:2104.06644.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. 2013. Recursive deep mod-
els for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
pages 1631–1642.

J Springenberg, Alexey Dosovitskiy, Thomas Brox,
and M Riedmiller. 2015. Striving for simplicity:
The all convolutional net. In ICLR (workshop track).

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017.
Axiomatic attribution for deep networks. In Pro-
ceedings of the 34th International Conference on
Machine Learning, volume 70 of Proceedings of
Machine Learning Research, pages 3319–3328, In-
ternational Convention Centre, Sydney, Australia.
PMLR.

Alex Tamkin, Trisha Singh, Davide Giovanardi, and
Noah Goodman. 2020. Investigating transferability
in pretrained language models. In Findings of the
Association for Computational Linguistics: EMNLP
2020, pages 1393–1401, Online. Association for
Computational Linguistics.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019.
Bert rediscovers the classical nlp pipeline. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4593–
4601.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the Seventh Conference on Natu-
ral Language Learning at HLT-NAACL 2003, pages
142–147.

Ke Tran. 2020. From english to foreign languages:
Transferring pre-trained language models. arXiv
preprint arXiv:2002.07306.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998–6008.

Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov,
Sharon Qian, Daniel Nevo, Yaron Singer, and Stuart
Shieber. 2020. Causal mediation analysis for inter-
preting neural nlp: The case of gender bias.

Alex Wang, Yada Pruksachatkun, Nikita Nangia,
Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel Bowman. 2019. Superglue: A
stickier benchmark for general-purpose language un-
derstanding systems. In Advances in Neural Infor-
mation Processing Systems, volume 32. Curran As-
sociates, Inc.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. Glue:
A multi-task benchmark and analysis platform for
natural language understanding. In Proceedings
of the 2018 EMNLP Workshop BlackboxNLP: An-
alyzing and Interpreting Neural Networks for NLP,
pages 353–355.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
http://proceedings.mlr.press/v70/shrikumar17a.html
http://proceedings.mlr.press/v70/shrikumar17a.html
http://arxiv.org/abs/2104.06644
http://arxiv.org/abs/2104.06644
http://arxiv.org/abs/2104.06644
http://proceedings.mlr.press/v70/sundararajan17a.html
https://doi.org/10.18653/v1/2020.findings-emnlp.125
https://doi.org/10.18653/v1/2020.findings-emnlp.125
https://www.aclweb.org/anthology/W03-0419
https://www.aclweb.org/anthology/W03-0419
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://arxiv.org/abs/2004.12265
http://arxiv.org/abs/2004.12265
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6


Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for
language understanding. In Advances in neural in-
formation processing systems, pages 5753–5763.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D. Manning. 2018. HotpotQA: A dataset
for diverse, explainable multi-hop question answer-
ing. In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing,
pages 2369–2380, Brussels, Belgium. Association
for Computational Linguistics.

Matthew D. Zeiler and Rob Fergus. 2014. Visualizing
and understanding convolutional networks. In Com-
puter Vision – ECCV 2014, pages 818–833, Cham.
Springer International Publishing.

https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259


Appendix for ‘Identifying the Limits of
Cross-Domain Knowledge Transfer
for Pretrained Models’

A Datasets

Table 2 in our main text shows statistics for the
six datasets included in our experiments. We use
the Dataset interface provided by the Hugging
Face library (Wolf et al., 2020) to foster repro-
ducibility. For each scrambling test, we use the
same splits as in the original datasets.

B Model and Training Setup

BERT Model Our BERT model has 12 heads and
12 layers, with hidden layer size 768. The model
uses the WordPiece tokenizer, with a maximum
sequence length of 128. We fine-tune our model
with a dropout probability of 0.1 for both atten-
tion weights and hidden states. We employ early
stopping with a patience of 5. This ensures a fair
comparison between different settings.

We use original BERT Adaam optimizer
(Kingma and Ba, 2014) with the default cross-
entropy loss as our loss function. Through
our experiments, we discover the initial learn-
ing rate plays an important role for performance
across all datasets. Thus, we optimize over
a wide range of initial learning rates including
{2e−5, 4e−5, 6e−5, 8e−5, 1e−4, 4e−4, 8e−4}. For
each initial learning rate, we repeat our experi-
ments for 3 different random seeds. Table 3 shows
the best averaged performance. To foster repro-
ducibility, our training pipeline is adapted from
the Hugging Face library (Wolf et al., 2020).
We use 6 × GeForce RTX 2080 Ti GPU each with
11GB memory. The training process takes about 1
hour to finish for the largest dataset and 15 minutes
for the smallest dataset.

LSTM Model Similar to our BERT model, we
use a maximum sequence length of 128. We em-
ploy a training batch of 1024, and early stopping
with a patience of 5. This ensures a fair compari-
son between different settings. It is worth to noting
that we find that BERT converges with scrambled
datasets as quickly as (i.e., with same amount of
steps) fine-tuning with original datasets.

We use the Adam optimizer with the cross-
entropy loss as our loss function. We experiment
with learning rates of {1e−3, 1e−4, 1e−5, 1e−6}
and choose the best one to report averaged per-
formance results over 3 runs with different random

seeds. We use 6 × GeForce RTX 2080 Ti GPU each
with 11GB memory. The training process takes less
than 1 hour to finish for all datasets.

BoW Model Similar with the BERT model, we
use dev sets to select the best model during training.
We employ early stopping with a patience of 5.
This ensures a fair comparison between different
settings.

We use the Adam optimizer with the cross-
entropy loss as our loss function. We experi-
ment with learning rates of {1e−3, 1e−4, 1e−5}
and choose the best one to report averaged per-
formance results over 3 runs with different ran-
dom seeds. For Conditional Random Fields mod-
els (CRFs), we use sklearn-crfsuite library
with default settings.3 All models are trained us-
ing CPUs. The training process takes less than 15
minutes to finish for all datasets.

Dummy Model We use the dummy classifier in
the sklearn library4 with stratified strategy as
our random model.

Non-pretrained BERT Model For training from
scratch, we try two stop conditions. First, we em-
ploy early stopping with a patience of 5. Next,
we also try another condition where we left the
model to run for 500 epochs for every dataset ex-
cept MRPC. For MRPC, we train it for 5000 epochs
due to its small data size. We select the best per-
formance out of these two options. This ensures
the model to explore in the parameter space ex-
haustively and fair comparison between fine-tuned
models and train-from-scratch models.

We use the BERT Adam optimizer with the
cross-entropy loss as our loss function. We fix
the initial learning rate at 1e−4, and choose the
best one to report averaged performance results
over 3 runs with different random seeds. We use
8 × GeForce RTX 2080 Ti GPU each with 11GB
memory. The training process takes about 4 hours
to finish for the largest dataset and 50 minutes for
the smallest dataset. For the fixed epoch approach,
the training process takes about 16 hours to finish
for the largest dataset, and 5 hours for the smallest
dataset.

3https://sklearn-crfsuite.readthedocs.
io/en/latest/

4https://scikit-learn.org/stable/
modules/generated/sklearn.dummy.
DummyClassifier.html
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C Frequency Matching

To study the effect of word frequencies on the trans-
ferability of BERT, we control word frequencies
when scrambling sentences. Figure 5 shows the
differences in frequencies of matched pairs. Our
results show that the difference in frequency for
a frequency-matched pair is significantly smaller
than a randomly matched pair.

To match word frequency during scrambling, we
first preprocess sentences by lower-casing and sep-
arating by spaces and punctuation. We then use
the original BERT WordPiece tokenizer to deter-
mine the sub-token length for each word, where
the sub-token length is the number of word pieces
a word contains. To randomly match words with
similar frequencies, we first bucket words by their
sub-token length. Then, we iterate through words
within each bucket in the order of word frequencies.
For each word, we use the round-robin method to
find the closest neighbor with the closest frequency.

A perfect match is not always possible as not
every word can be paired with another word with
an identical word frequency. We include the dis-
tributions of the difference in frequency for every
matched word pair in Appendix C to illustrate word
frequencies are preserved.

D Scrambed Sentence

In Table 5 and Table 6, we provide one example
sentence from each dataset destructed by our 4
scrambling methods. We also include the original
English sentence (OR) at the top for each dataset.



Scrambling Method

the worst titles in recent cinematic history Original Sentence
a engaging semi is everyone dull dark Similar Frequency
kitsch theatrically tranquil andys loaf shorty lauper Random

(a) Scrambled Examples from the SST-3 dataset with different types of scrambling methods.

Scrambling Method

premise: a lady wearing a batman shirt is walking along the boardwalk . Original Sentence
hypothesis: a woman is swimming in a lake .

premise: . car , . peach playing the outside hands is lay a Similar Frequency
hypothesis: . with the baseball man . helmet a

premise: moist cleaver surf moist blades smurf hover bugger unto locals pinnies
cotton

Random

hypothesis: moist songs hover starves blacktop moist beam

(b) Scrambled Examples from the SNLI dataset with different types of scrambling methods.

Scrambling Method

question: what objects do musicians have to have in order to play woodwind instru-
ments ?

Original Sentence

sentence: despite their collective name, not all woodwind instruments are made
entirely of wood .

question: a pubs people bomb first and first , areas and october confessor witnesses
of

Similar Frequency

sentence: video its rebels states in his world confessor witnesses ) under guam ? hall
the

question: warranties mundine encountered froschwiller nir entering nir litatio pa-
chomius entering mille says mc diaspora

Random

sentence: mosfet bigua satisfactory merv gooding daewoo kennedy says mc iditarod
scrofula depositing unprotected ubaidian oran

(c) Scrambled Examples from the QNLI dataset with different types of scrambling methods.

Table 5: Comparisons between the original English sentence and scrambled sentences.



Scrambling Method

sentence1: the court then stayed that injunction , pending an appeal by the canadian
company .

Original Sentence

sentence2: the injunction was immediately stayed pending an appeal to the federal
circuit court of appeals in Washington .

sentence1: . cents executive airways for simon to needs 1 economy from . custody
no the

Similar Frequency

sentence2: . simon at loss airways needs 1 economy , . share sending cents in stores
of dollar the

sentence1: najaf render analyzed threatening earners bethany hurlbert melville 517
riyadh birdie najaf hail weighs warden

Random

sentence2: najaf bethany roared jackson threatening melville 517 riyadh eves najaf
credentials manfred render mission noting deceptive things warden

(a) Scrambled Examples from the MRPC dataset with different types of scrambling methods.

Scrambling Method

relations with Russia , which is our main partner , have great importance " Kuchma
said .

Original Sentence

overseas 0 NEW . are 4 city children Draw . after Wasim Mia . on turning ’s Similar Frequency
providing 585 soliciting Pushpakumara Grabowski dissidents Kuwait flick-on
Sorghum Pushpakumara Goldstein Batty secure Pushpakumara 0#NKEL.RUO Gama
603 LUX

Random

(b) Scrambled Examples from the EN-EWT dataset with different types of scrambling methods.

Scrambling Method

We walked in to pick our little man at 10 minutes to closing and heard laughter from
kids and the staff .

Original Sentence

any murder is themselves good Iraq second my family Your hell a .? phenomenal n’t
death a . every the

Similar Frequency

northward Darfur Bert stink Minimum descriptive Ã³l gunning Turns discomfort
TERRIBLE stink Washington passcode Ham’s blurred human 15 passcode agree
faction Goldman

Random

(c) Scrambled Examples from the CoNLL-2003 dataset with different types of scrambling methods.

Table 6: Comparisons between the original English sentence and scrambled sentences.



(a) Scrambling with similar frequency for SST-3. (b) Random scrambling for on SST-3.

(c) Scrambling with similar frequency for SNLI. (d) Random scrambling for on SNLI.

(e) Scrambling with similar frequency for QNLI. (f) Random scrambling for on QNLI.

(g) Scrambling with similar frequency for MRPC. (h) Random scrambling for on MRPC.

(i) Scrambling with similar frequency for EN-EWT. (j) Random scrambling for on EN-EWT.

(k) Scrambling with similar frequency for CoNLL-2003. (l) Random scrambling for on CoNLL-2003.

Figure 5: Distributions of difference in word frequency for each dataset.


